strained dioxabicyclic ketals6a and screened various gold salts
and other metal catalysts using 2-methyl-2-n-octynyl-1,5-
diol 1a, which is promptly obtained by LAH reduction of
the parent diester.3b
Scheme 2. Synthesis of 2-Alkynyl-1,5-diol 1 and Its
Transformations Through a Gold-Catalyzed Cycloisomerization
Table 1. Optimum Conditions for Cycloisomerization of
2-Alkynyl-1,5-diol 1a to Dioxabicyclo[4.2.1] Ketal 2aa
entry
catalyst
AuCl
AuCl3
AuBr3
(PPh3)AuOTfc
AgOTf
PtCl2
AuCl
AuCl
AuCl
AuCl
solvent
yield [%]b
1
2
3
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
DCE
CHCl3
Toluene
THF
91
88
78
59
76
80
88
90
87
73
45
12
4
5d
6d
7
symmetrical 2-alkynyl-1,5-diols could lead to bicyclo[4.2.1]
ketals6 or functionalized tetrahydropyrans2a,b (Scheme 2).
The starting diols are readily obtained from the reduction of
2-alkynyl-substituted glutarates isolated from the Michael
addition of allenoates to methyl acrylate. Herein, we wish
to report that the gold-catalyzed cycloisomerization of
2-alkynyl-1,5-diols to dioxabicyclo[4.2.1] ketals can also be
directed toward the synthesis of the corresponding tetrahy-
dropyrans; all of these processes occur in high yields and
under mild conditions.
8
9
10
11
12
AuCl
AuCl
CH3CN
MeOH
a General conditions: 2-alkynyl-1,5-diol 1a 0.20 mmol, solvent 1.0 mL.
b Isolated yields. c In situ generated from the mixture of (PPh3)AuCl and
AgOTf. d Reaction time was prolonged to 24 h.
We took a cue from Genet and co-workers’ gold-catalyzed
cycloisomerization of bishomopropargylic diols to yield
To our satisfaction, with gold(I) chloride, the reaction
proceeded very smoothlysin dichloromethane at room
temperaturesand was completed in 10 min; the desired
dioxabicyclo[4.2.1] ketal 2a was isolated in 91% yield (Table
1, entry 1). Other metal catalysts as well as solvent effects
were investigated. Gold(III) chloride, gold(III) bromide, and
triphenylphosphine gold(I) triflate also catalyzed the cycloi-
somerization efficiently (Table 1, entries 2-4). Silver triflate
and platinum(II) chloride could catalyze the reaction too, but
in these cases prolonged reaction times (24 h) were needed
(Table 1, entries 5 and 6). The reaction with gold(I) chloride
proceeded smoothly in 1,2-dichloroethane, chloroform, tolu-
ene, and tetrahydrofuran (Table 1, entries 7-10). However,
in contrast with Genet’s report,6a the lowest yield was
obtained using methanol as the solvent (Table 1, entry 12),
perhaps due to the low stability of the product in the reaction
or isolation process.
(3) (a) Xu, B.; Hammond, G. B. Angew. Chem., Int. Ed. 2008, 47, 689.
(b) Liu, L.-P.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3887. (c)
Wang, W.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3713. (d) Yang,
H.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 5589. (e) Liu, L.-P.; Xu,
B.; Mashuta, M. S.; Hammond, G. B. J. Am. Chem. Soc. 2008, 130, 17642.
(f) Aponte, J. C.; Hammond, G. B.; Xu, B. J. Org. Chem. 2009, 74, 4623.
(4) For selected recent reviews on gold catalysis, see:(a) Hashmi, A. S. K.
Chem. ReV. 2007, 107, 3180. (b) Marion, N.; Nolan, S. P. Angew. Chem.,
Int. Ed. 2007, 46, 2750. (c) Li, Z.; Brouwer, C.; He, C. Chem. ReV. 2008,
108, 3239. (d) Arcadi, A. Chem. ReV. 2008, 108, 3266. (e) Jimenez-Nunez,
E.; Echavarren, A. M. Chem. ReV. 2008, 108, 3326. (f) Gorin, D. J.; Sherry,
B. D.; Toste, F. D. Chem. ReV. 2008, 108, 3351. (g) Bongers, N.; Krause,
N. Angew. Chem., Int. Ed. 2008, 47, 2178. (h) Hashmi, A. S. K.; Hutchings,
G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (i) Furstner, A.; Davies, P. W.
Angew. Chem., Int. Ed. 2007, 46, 3410. (j) Jimenez-Nunez, E.; Echavarren,
A. M. Chem. Commun. 2007, 333. (k) Zhang, L.; Sun, J.; Kozmin, S. A.
AdV. Synth. Catal. 2006, 348, 2271. (l) Ma, S.; Yu, S.; Gu, Z. Angew. Chem.,
Int. Ed. 2006, 45, 200. (m) Nevado, C.; Echavarren, A. M. Synthesis 2005,
167. (n) Widenhoefer, R. A.; Han, X. Q. Eur. J. Org. Chem. 2006, 4555.
(o) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (p) Shen, H. C.
Tetrahedron 2008, 64, 3885. (q) Shen, H. C. Tetrahedron 2008, 64, 7847.
(r) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64, 4917. (s) Widenhoefer, R. A.
Chem.sEur. J. 2008, 14, 5382.
To examine the scope of this reaction, we investigated
other aliphatic and aromatic 2-alkynyl-1,5-diols 1. The results
are outlined in Table 2.
In all cases, the reactions proceeded smoothly under mild
conditions, and the desired products were isolated in moder-
(5) For selected recent articles on Au-catalyzed reactions of carbon-carbon
multiple bonds, see:(a) Escribano-Cuesta, A.; Lopez-Carrillo, V.; Janssen,
D.; Echavarren, A. M. Chem.sEur. J. 2009, 15, 5646. (b) Li, H.;
Widenhoefer, R. A. Org. Lett. 2009, 11, 2671. (c) Mauleon, P.; Zeldin,
R. M.; Gonzalez, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348.
(d) Trillo, B.; Lopez, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledos,
A.; Mascarenas, J. L. Chem.sEur. J. 2009, 15, 3336. (e) Meng, J.; Zhao,
Y.-L.; Ren, C.-Q.; Li, Y.; Li, Z.; Liu, Q. Chem.sEur. J. 2009, 15, 1830.
(f) Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740. (g)
Xia, Y.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. J. Am. Chem. Soc. 2008,
130, 6940. (h) Barluenga, J.; Fernandez-Rodriguez, M. A.; Garcia-Garcia,
P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764. (i) Zhang, Z.;
Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283. (j) Tian, G.-Q.;
Shi, M. Org. Lett. 2007, 9, 4917.
(6) (a) Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem.
Soc. 2005, 127, 9976. (b) Oh, C. H.; Yi, H. J.; Lee, J. H. New J. Chem.
2007, 31, 835. (c) Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489. (d)
Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8, 4907. (e) Zhang, Y.; Xue,
J.; Xin, Z.; Xie, Z.; Li, Y. Synlett 2008, 940. (f) Aponick, A.; Li, C.-Y.;
Palmes, J. A. Org. Lett. 2009, 11, 121. (g) Dai, L.-Z.; Qi, M.-J.; Shi, Y.-
L.; Liu, X.-G.; Shi, M. Org. Lett. 2007, 9, 3191.
Org. Lett., Vol. 11, No. 21, 2009
5091