2 (a) J. W. Chin and A. Schepartz, Angew. Chem., Int. Ed., 2001, 40,
3806–3809; (b) J. A. Kritzer, R. Zutshi, M. Cheah, F. A. Ran,
R. Webman, T. M. Wongjirad and A. Schepartz, ChemBioChem,
2006, 7, 29; (c) T. J. Smith, C. I. Stains, S. C. Meyer and I. Ghosh,
J. Am. Chem. Soc., 2006, 128, 14456–14457.
3 (a) J. A. Kritzer, J. D. Lear, M. E. Hodsdon and A. Schepartz,
J. Am. Chem. Soc., 2004, 126, 9468; (b) J. D. Sadowsky,
W. D. Fairlie, E. B. Hadley, H. S. Lee, N. Umezawa,
Z. Nikolovska-Coleska, S. Wang, D. C. Huang, Y. Tomita and
S. H. Gellman, J. Am. Chem. Soc., 2007, 129, 139; (c) E. F.
Lee, J. D. Sadowsky, B. J. Smith, P. E. Czabotar,
K. J. Peterson-Kaufman, J. Kimberly, P. M. Colman,
S. H. Gellman and D. W. Fairlie, Angew. Chem., Int. Ed., 2009,
48, 4318.
4 (a) B. P. Orner, J. T. Ernst and A. D. Hamilton, J. Am. Chem. Soc.,
2001, 123, 5382; (b) H. Yin, G. I. Lee, K. A. Sedey, O. Kutzki,
H. S. Park, B. P. Orner, J. T. Ernst, H. G. Wang, S. M. Sebti and
A. D. Hamilton, J. Am. Chem. Soc., 2005, 127, 10191;
(c) A. Shaginian, L. R. Whitby, S. Hong, I. Hwang, B. Farooqi,
M. Searcey, J. Chen, P. K. Vogt and D. L. Boger, J. Am. Chem.
Soc., 2009, 131, 5564; (d) J. P. Plante, T. Burnley, B. Malkova,
M. E. Webb, S. L. Warriner, T. A. Edward and A. J. Wilson,
Chem. Commun., 2009, 5045.
5 (a) L. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto,
R. D. Wright, G. Wagner, G. L. Verdine and S. J. Korsmeyer,
Science, 2004, 305, 1466; (b) D. Wang, W. Liao and P. S. Arora,
Angew. Chem., Int. Ed., 2005, 44, 6525–6529; (c) L. K. Henchey,
A. L. Jochim and P. S. Arora, Curr. Opin. Chem. Biol., 2008, 12,
692.
6 (a) T. Oltersdorf, S. W. Elmore, A. R. Shoemaker,
R. C. Armstrong, D. J. Augeri, B. A. Belli, M. Bruncko,
T. L. Deckwerth, J. Dinges, P. J. Hajduk, M. K. Joseph,
S. Kitada, S. J. Korsmeyer, A. R. Kunzer, A. Letai, C. Li,
M. J. Mitten, D. G. Nettesheim, S. Ng, P. M. Nimmer,
J. M. O’Connor, A. Oleksijew, A. M. Petros, J. C. Reed,
W. Shen, S. K. Tahir, C. B. Thompson, K. J. Tomaselli,
B. Wang, M. D. Wendt, H. Zhang, S. W. Fesik and
S. H. Rosenberg, Nature, 2005, 435, 677; (b) I. J. Enyedy,
Y. Ling, K. Nacro, Y. Tomita, X. Wu, Y. Cao, R. Guo, B. Li,
X. Zhu, Y. Huang, Y. Q. Long, P. P. Roller, D. Yang and
S. Wang, J. Med. Chem., 2001, 44, 4313; (c) L. T. Vassilev,
B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic,
N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi and
E. A. Liu, Science, 2004, 303, 844; (d) A. Degterev, A. Lugovskoy,
M. Cardone, B. Mulley, G. Wagner, T. Mitchison and J. Yuan,
Nat. Cell Biol., 2001, 3, 173; (e) D. Zhai, C. Jin, A. C. Satterthwait
and J. C. Reed, Cell Death Differ., 2006, 13, 1419.
Fig. 4 (a) Inhibition profile of BH3I-1 (100 mM) against the PPI panel.
(b) Fluorescence polarization experiment with fluorescein labeled
p53-peptide and mDM2 with added BH3I-1 (400 mM to 391 nM)
resulting in a Kd = 5.3 mM.
compound6d led us to further interrogate the p53/hDM2
interaction utilizing a standard fluorescence polarization (FP)
assay with purified protein (Fig. 4b). The results from the FP
assay validated the split-luciferase screen and demonstrated
that BH3I-1 has a Kd = 5.3 mM against the p53/mDM2 pair,
which is comparable to its low micromolar potency reported
for the BH3 family of receptors.6e
In conclusion, we have developed a methodology amenable
for the rapid interrogation of the helix–receptor PPIs as an
initial test for probing their specificity. Of particular note is the
unanticipated inhibition of the p53/hDM2 interaction by
BH3I-1 a well known inhibitor of the Bcl2 family further
validated utilizing traditional fluorescence polarization experi-
ments. These studies demonstrate that both beneficial and
detrimental polypharmacology of existing compounds can be
potentially uncovered when larger sets of helix–receptor pairs
are interrogated. Future studies will aim to clarify the poten-
tial biological consequences of the observed polypharmacology
as well as interrogate larger sets of PPI pairs against small
molecule and peptide inhibitors. We anticipate that this simple
approach for establishing selectivity profiles, whether for
biological assays or for therapeutic leads, can help guide PPI
inhibitor design.
7 Z. A. Knight, H. Lin and K. M. Shokat, Nat. Rev. Cancer, 2010,
10, 130.
8 (a) T. Berg, Angew. Chem., Int. Ed., 2003, 42, 2462; (b) T. Berg,
S. B. Cohen, J. Desharnais, C. Sonderegger, D. J. Maslyar,
J. Goldberg, D. L. Boger and P. K. Vogt, Proc. Natl. Acad. Sci.
U. S. A., 2002, 99, 3830; (c) P. C. Brooks, S. Silletti, T. L. von
Schalscha, M. Friedlander and D. A. Cheresh, Cell (Cambridge,
Mass.), 1998, 92, 391; (d) J. C. Owicki, J. Biomol. Screening, 2000,
5, 297.
9 J. R. Porter, C. I. Stains, B. W. Jester and I. Ghosh, J. Am. Chem.
Soc., 2008, 130, 6488.
10 (a) P. Chene, Nat. Rev. Cancer, 2003, 3, 102; (b) G. Lessene,
P. E. Czabotar and P. M. Colman, Nat. Rev. Drug Discovery, 2008,
7, 989.
11 (a) N. Johnsson and A. Varshavsky, Proc. Natl. Acad. Sci. U. S. A.,
1994, 91, 10340; (b) J. N. Pelletier, F. X. Campbell-Valois and
S. W. Michnick, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 12141;
(c) I. Ghosh, A. D. Hamilton and L. Regan, J. Am. Chem. Soc.,
2000, 122, 5658; (d) K. E. Luker, M. C. Smith, G. D. Luker,
S. T. Gammon, H. Piwnica-Worms and D. Piwnica-Worms, Proc.
Natl. Acad. Sci. U. S. A., 2004, 101, 12288.
12 M. Certo, V. Del Gaizo Moore, M. Nishino, G. Wei,
S. Korsmeyer, S. A. Armstrong and A. Letai, Cancer Cell, 2006,
9, 351.
This research was partially supported by NIH (GM077403)
and NSF (CHE-0548264) to I. G and NIH (GM073943) to
P. S. A. We thank Dr Neal Zondlo for the His-MDM2 construct.
Notes and references
13 C. Tse, A. R. Shoemaker, J. Adickes, M. G. Anderson, J. Chen,
S. Jin, E. F. Johnson, K. C. Marsh, M. J. Mitten, P. Nimmer,
L. Roberts, S. K. Tahir, Y. Xiao, X. Yang, H. Zhang, S. Fesik,
S. H. Rosenberg and S. W. Elmore, Cancer Res., 2008, 68, 3421.
1 (a) J. A. Wells and C. L. McClendon, Nature, 2007, 450, 1001;
(b) M. R. Arkin and A. Whitty, Curr. Opin. Chem. Biol., 2009, 13,
284.
c
8022 Chem. Commun., 2010, 46, 8020–8022
This journal is The Royal Society of Chemistry 2010