6. For reviews of quinazoline synthetic methods see:
(a) D. J. Connolly, D. Cusack, T. P. O’Sullivan and P. J. Guiry,
Tetrahedron, 2005, 61, 10153; (b) K. Undheim and T. Benneche, in
Comprehensive Heterocyclic Chemistry II, ed. A. J. Boulton,
Pergamon, Oxford, 1998, vol. 6, pp. 93.
7. J. A. Blake, D. A. Pratt, S. Lin, J. C. Walton, P. Mulder and
K. U. Ingold, J. Org. Chem., 2004, 69, 3112.
8. F. Portela-Cubillo, J. S. Scott and J. C. Walton, Chem. Commun.,
2007, 4041.
9. For alternative methods of generating iminyl radicals see:
(a) S. Z. Zard, Synlett, 1996, 1149; (b) L. E. Kaim and
C. Meyer, J. Org. Chem., 1996, 61, 1556; (c) K. Takai,
N. Katsura and Y. Kunisada, Chem. Commun., 2001, 1724;
(d) J. Boivin, E. Fouquet and S. Z. Zard, Tetrahedron Lett.,
1991, 32, 4299; (e) J. Boivin, A.-M. Schiano and S. Z. Zard,
Tetrahedron Lett., 1992, 33, 7849; (f) M. Kitamura, Y. Mori and
K. Narasaka, Tetrahedron Lett., 2005, 46, 2373; (g) M. Yoshida,
M. Kitamura and K. Narasaka, Bull. Chem. Soc. Jpn., 2003, 76,
2003; (h) R. Alonso, P. J. Campos, B. Garcia and
M. A. Rodriguez, Org. Lett., 2006, 8, 3521; (i) T. Mikami and
K. Narasaka, Chem. Lett., 2000, 338; (j) D. Nanni, P. Pareschi,
C. Rizzoli, P. Sgarabotto and A. Tundo, Tetrahedron, 1995, 51,
9045; (k) R. Leardini, H. McNab, M. Minozzi and D. Nanni,
J. Chem. Soc., Perkin Trans. 1, 2001, 1072.
10. The option of the aminyl radical 4b undergoing a second 5-exo-
trig cyclisation onto the butenyl chain to afford a tricyclo-radical,
with final production of a tetrahydropyrrolo[1,2-a]quinazoline, is
a clear possibility for this species. However, none of this product
was detected and evidently H-atom abstraction by 4b from the
toluene solvent is too fast for the second cyclisation to compete.
11. (a) J. Hine, M. S. Cholod and W. K. Chess Jr, J. Am. Chem. Soc.,
1973, 95, 4270; (b) J. Hine and Y. Chou, J. Org. Chem., 1981, 46,
649.
Scheme 2 Possible role of zinc chloride in quinazoline formation.
to the imine nitrogen prior to cyclisation i.e. 9 and the
subsequent ring closure gives amminium radical cation 10 in
a process akin to an iminium salt cyclisation. The adjacent
cation would considerably lower the pKa of the H-atom at
position 2 of the heterocycle 10. Proton loss would then yield
11 in
a process reminiscent of the Minisci reaction
(Scheme 2).18 Stabilised intermediate 11 might transfer an
electron to the starting oxime ether to give 12 or be converted
to 13 on exposure to oxygen during work-up. When the ZnCl2
is not present, the C–H at position 2 is not acidic, and hence
aromatisation to a quinazoline does not occur.19
Overall, this process is a two-stage synthetic route from
2-aminoarylalkenones via their O-phenyl oximes and thence
by a one pot procedure with carbonyl compounds to dihy-
droquinazolines or quinazolines. The process is of wide scope
and works well with alkyl, aryl and heterocyclic types of
aldehyde. The reaction has several advantages over existing
methods for quinazoline synthesis. It is rapid (30 min) and
requires no acids, bases, or toxic metals. It is comparatively
mild and high yielding. The O-phenyl oximes are easily made
in one step and can be stored indefinitely. Unlike many other
radical-mediated synthetic methods, no initiator is needed and
hence no by-products from initiator fragments contaminate
the system. There is evidently a promising future for micro-
wave-assistance in reactions where the initial step is homolysis
of a weak bond in a reactant molecule, O-phenyl oxime ethers
being prime examples.
12. S. Kim, K. S. Yoon and Y. S. Kim, Tetrahedron, 1997, 38, 73.
13. M.-H. Le Tadic-Biadatti, A.-C. Callier-Dublanchet, J. H. Horner,
B. Quiclet-Sire, S. Z. Zard and M. Newcomb, J. Org. Chem., 1997,
62, 559.
14. A. G. Fallis and I. M. Brinza, Tetrahedron, 1997, 53, 17543.
15. A. Pouilhes, Y. Langlois and A. Chiaroni, Synlett, 2003, 1488.
16. Experimental details for the preparation of 8d are typical of the
methodology for all the quinazolines. 4-Nitrobenzaldehyde (66
mg, 0.44 mmol) was added to a solution of 1-(2-aminophenyl)-
ethanone O-phenyl oxime 1 (100 mg, 0.44 mmol) in toluene (0.15
M), containing anhydrous ZnCl2 (17 mg, 0.13 mmol) and
emimPF6 (100 mg, 0.46 mmol) in a microwave vessel (2–5 cm3).
The vessel was sealed and subjected to microwave irradiation for
30 min at 160 1C in a Biotage Initiator system (nominally 300
MHz). After cooling, the ionic liquid was filtered off and the
toluene was removed under reduced pressure. The residue was
purified by flash column chromatography (5% EtOAc–hexane)
affording 4-methyl-2-(4-nitrophenyl)quinazoline 8d as a yellow
solid (105 mg, 90%). Mp 168–179 1C; nmax/cmÀ1 = 1597, 1569,
1548, 1340; 1H NMR (400 MHz, CDCl3), dH 2.96 (s, 3H, CH3),
7.58 (ddd, J = 8.2, 7.6, 1.2 Hz, 1H, CH), 7.84 (ddd, J = 8.5, 7.0,
1.4 Hz, 1H, CH), 8.02 (d, J = 7.8 Hz, 1H, CH), 8.04 (d, J = 7.8
Hz, 1H, CH), 8.26 (d, J = 9.0 Hz, 2H, CH), 8.72 (dt, J = 9.0, 2.0
Hz, 2H, CH); 13C NMR dC 21.5 (CH3), 122.3 (C), 122.6, 124.3,
126.9, 128.4, 128.3, 133.0 (CH), 143.0, 148.1, 149.2, 156.8, 167.8
(C); HRMS calcd for C15H12N3O2 (MH+) 266.0930, found
266.0936. Dihydroquinazolines were prepared in essentially the
same way, except that the zinc chloride was omitted.
We thank GSK and EaStChem for financial support and
Dr M. C. Clarke for loaning the microwave reactor.
Notes and references
1. J. P. Michael, Nat. Prod. Rep., 2003, 20, 476.
2. (a) J. H. Chan, J. S. Hong, L. F. Kuyper, M. L. Jones,
D. P. Baccanari, R. L. Tansik, C. M. Boytos, S. K. Rudolf and
A. D. Brown, J. Heterocycl. Chem., 1997, 34, 145;
(b) S. L. Gackenheimer, J. M. Schaus and D. R. Gehlert,
J. Pharmacol. Exp. Ther., 1995, 274, 1558; (c) R. O. Dempcy
and E. B. Skibo, Biochemistry, 1991, 30, 8480.
3. P.-P. Kung, M. D. Casper, K. L. Cook, L. Wilson-Lingardo,
L. M. Risen, T. A. Vickers, R. Ranken, L. B. Blyn, J. R. Wyatt,
P. D. Cook and D. J. Ecker, J. Med. Chem., 1999, 42, 4705.
4. A. C. Tinker, H. G. Beaton, N. Broughton-Smith, T. R. Cook,
S. L. Cooper, L. Fraser-Rae, K. Hallam, P. Framley, T. McInally,
D. J. Nicholls, A. D. Pimm and A. V. Wallace, J. Med. Chem.,
2003, 46, 913.
17. Electrocyclic ring closures of imines 2 to 3-phenoxy-2,3-dihydro-
quinazolines followed by elimination of PhOR1 or PhOR2 could
give the quinazoline products. However, precedents suggest it is
unlikely both these steps could be fast enough to compete with the
radical process (see ref. 20).
18. (a) F. Fontana, F. Minisci, M. C. N. Barbosa and E. Vismara,
J. Org. Chem., 1991, 56, 2866; (b) F. Minisci, F. Recupero,
C. Punta, C. Gambarotti, F. Antonietti, F. Fontana and
G. F. Pedulli, Chem. Commun., 2002, 2496.
5. R. J. Abdel-Jalil, W. Volter and M. Saeed, Tetrahedron Lett.,
2004, 45, 3475.
19. We thank an anonymous referee for suggesting this mechanism.
20. B. M. Trost and A. C. Gutierrez, Org. Lett., 2007, 9, 1473.
¨
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 2935–2937 | 2937