calculations support a two-step no-intermediate mechanism,8
it is generally accepted that the ene reaction proceeds through
an intermediate. In particular, previous isotopic studies of
teramethylethylenes-d6 (TME-d6)9a and trapping experi-
ments9b,c have already excluded the possibility of a concerted
mechanism. Additionally, biradicals,10 open dipolar inter-
mediates,10 perepoxides,9,11 and gradations between all of
these possibilities have found both experimental and theoreti-
cal support.
The photooxygenation of (S,S)-cis-1,4-diphenyl-2-butene-
1,4-d2 (1) was examined. This olefin has three distinctive
characteristics: (a) chirality at the two reactive allylic carbons
C1 and C4, by virtue of stereospecific deuteration, (b)
different groups at both ends of the double bond such that
the ene adducts will contain a new stereogenic center, and
(c) a C2 symmetry axis such that the two faces of the double
bond are equal.
Studies on the stereoselectivity12 and regioselectivity13 of
1
the O2 ene reaction with nonfunctionalized alkenes have
also attracted considerable attention. It is generally recog-
nized that 1O2 adds to trisubstituted alkenes with syn
selectivity (cis effect)14 and to nonsymmetrical cis-1,2-
dialkylsubstituted alkenes with regioselective double-bond
formation next to the large group (nonbonding large group
effect).15 Moreover, the addition of O2 to alkylsubstituted
1
alkenes shows a general preference for hydrogen abstraction
from the group that is geminal to the larger substituent of
the double bond.16
The key intermediate for the synthesis of (S,S)-cis-1,4-
diphenyl-2-butene-1,4-d2 (1) is the optically active (by virtue
deuterium labeling) alcohol 7, whose chiro-optical properties
are known17 (Scheme 1). Esterification of (S)-(+)-mandelic
In this paper, we report details regarding the stereochem-
1
istry of the O2 ene reaction with simple nonfunctionalized
alkenes. To the best of our knowledge, this is the first
example for the photooxygenation of a symmetrical and
optically active alkene bearing equivalent double bond faces.
The results presented may have important implications
regarding the precise mechanism of this classical ene
reaction.
Scheme 1
.
Synthesis of (S,S)-cis-1,4-Diphenyl-2-butene-1,4-d2
from (S)-(+)-Mandelic Acid (2)
(7) Griesbeck, A. G.; El-Idreesy, T. T.; Adam, W. ; Krebs, O. Ene
Reactions with Singlet Oxygen In CRC Handbook of Organic Photochem-
istry and Photobiology; Horspool, W. M., Lenci, F., Eds.; CRC Press: Boca
Raton, 2004; Chapter 8.
(8) (a) Leach, A. G.; Houk, K. N. Chem. Commun. 2002, 1243–1255.
(b) Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach,
A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N.
J. Am. Chem. Soc. 2003, 125, 1319–1328.
(9) (a) Stephenson, L.; Grdina, S. B.; Orfanopoulos, M. Acc. Chem. Res.
1980, 13, 419–425. (b) Schaap, A. P.; Recher, S. G.; Faler, G. R.; Villasenor,
S. R. J. Am. Chem. Soc. 1983, 105, 1691–1693. (c) Poon, T. H. W.; Pringle,
K.; Foote, C. S. J. Am. Chem. Soc. 1995, 117, 7611–7618.
(10) (a) Harding, L. B.; Goddard, W. A. J. Am. Chem. Soc. 1980, 102,
439–449. (b) Jefford, C. W.; Kohmoto, S.; Boukouvalas, J.; Burger, U.
J. Am. Chem. Soc. 1983, 105, 6498–6499. (c) Maranzana, A.; Ghigo, G.;
Tonachini, G. Chem. Eur. J. 2003, 9, 2616–2626.
(11) For selected experimental work, see: (a) Orfanopoulos, M.; Foote,
C. S. J. Am. Chem. Soc. 1988, 110, 6583–6584. (b) Orfanopoulos, M.;
Smonou, I.; Foote, C. S. J. Am. Chem. Soc. 1990, 112, 3607–3614. (c)
Alberti, M. N.; Orfanopoulos, M. Org. Lett. 2008, 10, 2465–2468. For
theoretical work, see: (d) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc.
1975, 97, 3978–3986. (e) Yamaguchi, K.; Yabushita, S.; Fueno, T.; Houk,
K. N. J. Am. Chem. Soc. 1981, 103, 5043–5046. (f) Yoshioka, Y.; Yamada,
S.; Kawakami, T.; Nishino, M.; Yamaguchi, K.; Saito, I. Bull. Chem. Soc.
acid (2) afforded (S)-(+)-methyl mandelate (3) which was
reduced with LiAlH4 to (S)-(+)-phenylethylene glycol (4).
Reaction of 4 with trimethyl orthoacetate by the method of
Newman18 afforded a mixture of two diastereomers (2S,4S)-
and (2R,4S)-2-methoxy-2-methyl-4-phenyl-1,3-dioxolane (5).
Subsequent treatment with trimethylsilyl chloride afforded
(R)-2-chloro-2-phenylethyl acetate (6).17 Reduction of 6 with
LiAlD4 to the corresponding alcohol (7), followed by
mesylation and subsequent reaction with PPh3 of the resultant
mesylate 8, afforded the phosphonium salt 9. Finally, the
Jpn. 1996, 69, 2683–2699
.
(12) (a) Stephenson, L. M.; McClure, D. E.; Sysak, P. K. J. Am. Chem.
Soc. 1973, 95, 7888–7889. (b) Orfanopoulos, M.; Stephenson, L. M. J. Am.
Chem. Soc. 1980, 102, 1417–1418. (c) Prein, M.; Adam, W. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 477–494.
(13) (a) Stratakis, M.; Orfanopoulos, M. Tetrahedron 2000, 56, 1595–
1615. (b) Clennan, E. D. Tetrahedron 2000, 56, 9151–9179. (c) Alberti,
M. N.; Orfanopoulos, M. Tetrahedron 2006, 62, 10660–10675.
(14) (a) Schulte-Elte, K. H.; Muller, B. L.; Rautenstrauch, V. HelV. Chim.
Acta 1978, 61, 2777–2783. (b) Orfanopoulos, M.; Grdina, M. B.; Stephen-
son, L. M. J. Am. Chem. Soc. 1979, 101, 275–276.
(15) (a) Orfanopoulos, M.; Stratakis, M.; Elemes, Y. J. Am. Chem. Soc.
1990, 112, 6417–6419. (b) Orfanopoulos, M.; Stratakis, M.; Elemes, Y.;
Jensen, F. J. Am. Chem. Soc. 1991, 113, 3180–3181.
(17) Elsenbaumer, R. L.; Mosher, H. S. J. Org. Chem. 1979, 44, 600–
604, and references cited therein.
(16) (a) Clennan, E. L.; Chen, X.; Koola, J. J. J. Am. Chem. Soc. 1990,
112, 5193–5199. (b) Orfanopoulos, M.; Stratakis, M.; Elemes, Y. J. Am.
Chem. Soc. 1990, 112, 6417–6418. (c) Stratakis, M.; Orfanopoulos, M.
Synth. Commun. 1993, 23, 425–430.
(18) (a) Newman, M. S.; Chen, C. H. J. Am. Chem. Soc. 1973, 95, 278–
279. (b) Newman, M. S.; Olsen, D. O. J. Org. Chem. 1973, 38, 4203–
4204.
3998
Org. Lett., Vol. 10, No. 18, 2008