MoO3 NPs as Recyclable Heterogeneous Catalyst for Synthesis of Arylidene Ethyl Cyanoacetates
Pourshojaei et al.
CHPhꢃ, 7.08 (d, J = 9.0, 2H, CHArꢃ, 5.15 (s, 2H, OCH2ꢃ,
4.40 (q, 2H, J = 6.0, OCH2ꢃ, 1.43 (t, J = 6.0, 3H,
CH3ꢃ; 13C NMR spectrum (75 MHz, DMSO-d6ꢃ, ꢅ, ppm:
163.0, 162.5, 154.2, 134.3, 134.2, 133.6, 128.9, 128.8,
124.7, 116.1, 115.5, 99.8, 69.5, 62.5, 14.2; Anal. calcd
for C19H16ClNO3: C, 66.77; H, 4.72; N, 4.10; Found:
C, 66.81; H, 4.69; N, 4.16%.
2.4.4. Ethyl (E)-3-(3-((4-chlorobenzyl)oxy)phenyl)-2-
Cyanoacrylate (3p)
White powder; FT-IR spectrum, ꢄ, cm−1: 3061, 2949,
Figure 4. TGA analysis of MoO3 NPs.
2220, 1726, 1609, 1577, 1491, 1440, 1397, 1258, 1171,
3. RESULTS AND DISCUSSION
1085, 1044, 851, 777, 682; 1H NMR spectrum (300 MHz,
CDCl3ꢃ, ꢅ, ppm (J, Hz): 8.24 (s, 1H, CHVinylicꢃ, 7.70
(s, 1H, CHArꢃ, 7.54 (d, J = 6.0, 1H, CHArꢃ, 7.47–7.38
Molybdenum (VI) oxide nanoparticles were synthe-
sized by a slight modification of the solvothermal
reported method (Iranian Nanomaterials Pioneers Com-
pany, Mashhad).44 The functional groups of the MoO3
with the best crystalline degree were identified by FT-IR
spectrum (Fig. 1(A)). As can be seen from Figure 1, the
spectrum shows three strong peaks at 990 cm−1 attributed
to the stretching vibration of terminal M O bond with
an indicator of the layered orthorhombic MoO3 lattice,
855 cm−1 to the stretching vibration of Mo–O–Mo bonds,
and a broad band at 558 cm−1 corresponding to the
bending-stretching vibration of oxygen atom linked to
three Mo atoms.45 In FT-IR spectrum, not appearing of
peaks at 1620 and 1400 cm−1 demonstrates that MoO3
1
2
(m, 5H, CHArꢃ, 7.19 (dd, J = 6.0, J = 3.0, CHArꢃ, 5.13
(s, 2H, OCH2ꢃ, 4.43 (q, J = 6.0, 2H, OCH2ꢃ, 1.44 (t, J =
6.0, 3H, CH3ꢃ; 13C NMR spectrum (75 MHz, DMSO-d6ꢃ,
ꢅ, ppm: 162.4, 158.8, 154.8, 134.7, 134.0, 132.7, 130.3,
128.9, 128.8, 124.8, 120.9, 115.5, 115.2, 103.2, 69.4, 62.8,
14.1; Anal. calcd for C19H16ClNO3: C, 66.77; H, 4.72;
N, 4.10; Found: C, 66.81; H, 4.65; N, 4.13%.
2.4.5. Ehyl (E)-3-(4-((4-bromobenzyl)oxy)phenyl)-2-
Cyanoacrylate (3q)
−1
White crystals; FT-IR spectrumIP, :ꢄ4,6c.1m48.:11350.2175,42O94n8:,Thu, 16 May 2019 02:07:53
2218, 1724, 1590, 1514, 1434, 1381, 1311, 1268, 1214,
NPs are not in hexagonal phase, and appearing of peaks
Copyright: American Scientific Publishers
−1
Delivered by Ingenta
only at 990, 855, 558 cm strongly confirms that MoO3
1183, 1093, 1069, 1002, 832, 804, 759, 554, 515; 1H NMR
spectrum (300 MHz, CDCl3ꢃ, ꢅ, ppm (J, Hz): 8.20 (s, 1H,
CHVinylicꢃ, 8.03 (d, J = 9.0, 2H, CHArꢃ, 7.57 (d, J = 9.0,
2H, CHArꢃ, 7.34 (d, J = 9.0, 2H, CHArꢃ, 7.08 (d, J = 9.0,
2H, CHArꢃ, 5.13 (s, 2H, OCH2ꢃ, 4.40 (q, J = 6.0, 2H,
OCH2ꢃ, 1.42 (t, J = 6.0, 3H, CH3ꢃ; 13C NMR spectrum
(75 MHz, DMSO-d6ꢃ, ꢅ, ppm: 163.0, 162.5, 154.2, 134.8,
133.6, 131.9, 129.1, 124.8, 122.3, 116.1, 115.5, 99.8,
69.5, 62.5, 14.2; Anal. calcd for C19H16BrNO3: C, 59.08;
H, 4.18; N, 3.63; Found: C, 59.12; H, 4.11; N, 3.67%.
NPs are in orthorhombic phase.44
X-ray diffraction pattern (XRD) of the MoO3 NPs was
shown in Figure 1(B). In the XRD pattern of MoO3 NPs,
the distinguished diffraction peaks centered at 2ꢆ ∼ 23ꢇ7ꢀ,
25.9ꢀ, 27.1ꢀ, 33.7ꢀ, 33.9ꢀ, 35.8ꢀ, 39.1ꢀ, and 49.2ꢀ related
respectively to the (001), (011), (021), (101), (111), (121),
(051) and (002) plane of the MoO3 with an rutile phase
Table I. Examination of different conditions on model reaction.a
Entry
Catalyst
Solvent/temp.
Yieldb
1
2
3
4
5
6
7
8
None
None
EtOH, Reflux
Solvent-free, 80 ꢀC
CH2Cl2, Reflux
CH3CN, 50 ꢀC
35
30
43
45
48
45
51
78
85
86
90
91
95
96
96
91
2.4.6. Ethyl (E)-3-(3-((4-bromobenzyl)oxy)phenyl)-2-
Cyanoacrylate (3r)
Na2HPO4 (5 mol%)
Na2CO3 (5 mol%)
p-TSA (5 mol%)
Piperidine (5 mol%)
Et3N (5 mol%)
MoO3 NPs (5 mol%)
MoO3 NPs (5 mol%)
MoO3 NPs (5 mol%)
MoO3 NPs (5 mol%)
MoO3 NPs (5 mol%)
MoO3 NPs (5 mol%)
MoO3 NPs (4 mol%)
MoO3 NPs (3 mol%)
MoO3 NPs (2 mol%)
White powder; FT-IR spectrum, ꢄ, cm−1: 3045, 3028,
2955, 2225, 1732, 1614, 1574, 1486, 1430, 1378, 1254,
1166, 1056, 1011, 980, 871, 798, 776, 680, 476; 1H NMR
spectrum (300 MHz, CDCl3ꢃ, ꢅ, ppm (J, Hz): 8.24 (s, 1H,
CHVinylicꢃ, 7.70 (t, J = 3.0, 1H, CHArꢃ, 7.57–7.35 (m, 6H,
CHArꢃ, 7.21–7.17 (m, 1H, CHArꢃ, 5.12 (s, 2H, OCH2ꢃ,
4.43 (q, J = 6.0, 2H, OCH2ꢃ, 1.44 (t, J = 6.0, 3H, CH3ꢃ;
13C NMR spectrum (75 MHz, CDCl3ꢃ, ꢅ, ppm: 162.4,
158.8, 154.8, 135.3, 132.7, 131.8, 130.3, 129.2, 124.8,
122.1, 120.9, 115.5, 115.2, 130.3, 69.4, 62.8, 14.1. Anal.
calcd for C19H16BrNO3: C, 59.08; H, 4.18; Br, 20.69;
N, 3.63; Found: C, 59.15; H, 4.23; N, 3.65%.
MeOH, 50 ꢀC
H2O, 50 ꢀC
EtOH, 50 ꢀC
H2O, 50 ꢀC
9
EtOH, r.t.
10
11
12
13
14
15
16
EtOH/H2O (1:1), r.t.
EtOH/H2O (2:1), r.t.
EtOH/H2O (3:1), r.t.
EtOH/H2O (4:1), r.t.
EtOH/H2O (4:1), r.t.
EtOH/H2O (4:1), r.t.
EtOH/H2O (4:1), r.t.
Notes: aReaction time: 60 min; bisolated yield.
5968
J. Nanosci. Nanotechnol. 19, 5965–5973, 2019