7376
T. Matsumaru et al. / Tetrahedron 64 (2008) 7369–7377
procedure for the preparation of 7, and 8 (561 mg, 2.38 mmol) was
converted to (ꢀ)-20 (750 mg, 63%) by same procedure as that de-
scribed above for the formation of (ꢀ)-15. IR nmax (NaCl): 1739, 1724
described above for the formation of (ꢀ)-tensyuic acid E. IR nmax
(NaCl): 3482 (COOH), 1737, 1698 (C]O), 1216 (C–O) cmꢁ1; 1H NMR
(400 MHz, CDCl3) d
: 6.53 (1H, s, 10-H), 5.83 (1H, s, 10-H), 3.66 (3H, s,
(C]O), 1199, 1141 (C–O), 1110 (C–O–Si) cmꢁ1
;
1H NMR (270 MHz,
1%-OCH3), 3.40 (2H, t, J¼8.8 Hz, 3-H2), 2.30 (2H, t, J¼9.2 Hz, 8-H2),
CDCl3)
d
: 7.68 (4H, m, Ar–H), 7.40 (6H, m, Ar–H), 6.36 (1H, s, 10-H),
2.02–1.54 (4H, complex m, 4, 7-H2), 1.44–1.28 (4H, complex m, 5, 6-
5.75 (1H, s, 10-H), 3.76 (3H, s, 1-OCH3), 3.68 (3H, s, 100-OCH3), 3.64
(2H, t, J¼6.4 Hz, 9-H), 3.50 (1H, t, J¼7.4 Hz, 3-H), 1.97–1.45 (4H,
complex m, 4, 8-H2), 1.42–1.18 (6H, complex m, 5, 6, 7-H2), 1.04 (9H,
H2); 13C NMR (100.6 MHz, CDCl3) : 179.4 (C-100), 174.3 (C-1%), 171.5
d
(C-1), 137.2 (C-2), 129.9 (C-100), 51.5 (9-OCH3), 47.0 (C-3), 33.9 (C-8),
29.5 (C-4), 28.7 (C-6), 27.0 (C-5), 24.6 (C-7). HRMS (FAB, m-NBA)
m/z: 259.1192 [MþH]þ; calcd for C12H19O6: 259.1182 [MþH].
s, SiC(CH3)3); 13C NMR (67.5 MHz, CDCl3) : 173.6 (C-100),166.5 (C-1),
d
138.3 (C-2), 135.4 (2C, Arꢃ2), 134.0 (Ar),129.4 (Ar),127.5 (2C, Arꢃ2),
126.6 (C-10), 63.9 (C-9), 52.2 (COOCH3), 51.8 (COOCH3), 46.4 (C-3),
32.3 (C-8), 31.1 (C-4), 28.9 (C-6), 27.3 (C-5), 26.8 (3C, SiC(CH3)3),
25.4 (C-9), 19.1 (SiC(CH3)3); HRMS (FAB, m-NBA) m/z: 519.2557
[MþNa]þ; calcd for C29H40O5SiNa: 519.2534 [MþNa].
4.3.6. 3-Carboxy-2-methylene-8-ethoxycarbonyloctanic acid
((ꢀ)-tensyuic acid C)
Boc-hydrazide (ꢀ)-23 (245 mg, 0.90 mmol) was converted to
(ꢀ)-tensyuic acid C (36 mg, 45%) with ethanol by the procedure as
that described above for the formation of (ꢀ)-tensyuic acid E. IR
4.3.2. Methyl 9-hydroxy-2-methylene-3-methoxycarbonyl-
nonanate ((ꢀ)-21)
nmax (NaCl): 3482 (COOH), 1707 (C]O), 1193 (C–O) cmꢁ1 1H NMR
;
(400 MHz, CDCl3) d
: 6.51 (1H, s, 10-H), 5.82 (1H, s, 10-H), 4.12 (2H, q,
TBDPS ether (ꢀ)-20 (700 mg, 1.41 mmol) was converted to
(ꢀ)-21 (270 mg, 78%) by the same procedure as that described
above for the formation of (ꢀ)-16. IR nmax (NaCl): 3473 (OH), 1737,
J¼7.2 Hz, 1%-OCH2CH3), 3.38 (2H, t, J¼8.2 Hz, 3-H2), 2.28 (2H, t,
J¼9.2 Hz, 8-H2), 2.0–1.67 (2H, m, 4-H), 1.67–1.54 (2H, m, 7-H2),
1.42–1.29 (4H, complex m, 5, 6-H2), 1.25 (3H, t, J¼10.0 Hz, 9-
1727 (C]O), 1143 (C–O) cmꢁ1
;
1H NMR (270 MHz, CDCl3)
d
: 6.34
OCH2CH3); 13C NMR (100.6 MHz, CDCl3) : 179.1 (C-100), 173.9 (C-
d
(1H, s, 10-H), 5.73 (1H, s, 10-H), 3.75 (3H, s, 1-OCH3), 3.66 (3H, s, 100-
OCH3), 3.60 (2H, t, J¼6.6 Hz, 9-H), 3.48 (1H, t, J¼7.3 Hz, 3-H), 1.98–
1.43 (4H, complex m, 4, 8-H2), 1.39–1.19 (6H, complex m, 5, 6, 7-H2);
1%), 171.2 (C-1), 137.3 (C-2), 129.6 (C-100), 60.3 (100-OOCH2CH3), 47.2
(C-3), 34.2 (C-8), 29.5 (C-4), 28.7 (C-6), 27.0 (C-5), 24.7 (C-7), 14.2
(100-OOCH2CH3). HRMS (FAB, m-NBA) m/z: 273.1339 [MþH]þ; calcd
for C13H21O6: 273.1338 [MþH].
13C NMR (67.5 MHz, CDCl3) : 173.8 (C-100), 166.7 (C-1), 138.3 (C-2),
d
126.7 (C-10), 62.8 (C-9), 52.1 (COOCH3), 52.0 (COOCH3), 46.5 (C-3),
32.6 (C-8), 31.1 (C-4), 29.0 (C-6), 27.3 (C-5), 25.4 (C-7). HRMS (FAB,
m-NBA) m/z: 259.1537[MþH]þ; calcd for C13H23O5: 259.1545
[MþH].
4.4. In vitro anti-trypanosomal assay
T. brucei brucei strain GUTat 3.1 was cultured in IMDM with
various supplements containing 10% heat-inactivated FBS at 37 ꢂC,
under 5% CO2/95% air. Ninety five microliters of the trypanosomal
suspension (2.0–2.5ꢃ104 trypanosomes/mL) of the bloodstream
4.3.3. Methyl 8-carboxy-2-methylene-3-methoxycarbonyloctanate
((ꢀ)-22)
Alcohol (ꢀ)-21 (270 mg, 1.05 mmol) was converted to (ꢀ)-22
(245 mg, 85%) by the same procedure as that described above for
the formation of (ꢀ)-17. IR nmax (NaCl): 3151 (COOH), 1737, 1731,
form was seeded in a 96-well microplate, and 5 mL of a test com-
pound solution (dissolved in 5% dimethyl sulfoxide, DMSO) was
added, followed by incubation for 72 h (long incubation–low in-
oculation test: LILIT). Ten microliters of the fluorescent dye Alamar
Blue was added to each well. After the incubation for 3–6 h, the
resulting solution was read at 528/20 nm excitation wavelength
and 590/35 nm emission wavelength by an FLꢃ800 fluorescent
plate reader (Bio-Tek Instrument, Inc., Vermont, USA). Data were
transferred into a spreadsheet program (Excel) and IC50 values
were determined using fluorescent plate reader software (KC-4,
Bio-Tek).
1712 (C]O), 1174, 1143 (C–O) cmꢁ1 1H NMR (270 MHz, CDCl3)
; d:
6.35 (1H, s, 10-H), 5.74 (1H, s, 10-H), 3.73 (3H, s, 1-OCH3), 3.66 (3H, s,
100-OCH3), 3.48 (1H, t, J¼7.4 Hz, 3-H), 2.32 (2H, t, J¼7.3 Hz, 8-H2),
1.99–1.53 (4H, complex m, 4, 8-H2), 1.43–1.20 (4H, complex m, 5, 6-
H2); 13C NMR (67.5 MHz, CDCl3) : 179.2 (C-100), 173.7 (C-1%), 166.6
d
(C-1), 138.2 (C-2), 126.8 (C-10), 52.2 (COOCH3), 52.1 (COOCH3), 46.5
(C-3), 33.8 (C-8), 31.0 (C-4), 28.6 (C-6), 27.1 (C-5), 24.4 (C-7). HRMS
(FAB, m-NBA) m/z: 273.1343 [MþH]þ; calcd for C13H21O6: 273.1338
[MþH].
Acknowledgements
4.3.4. N0-tert-Butyl ester-7,8-dimethoxycarbonylnonanohydrazide-
8-ene ((ꢀ)-23)
We wish to thank Ms. A. Nakagawa, Ms. C. Sakabe, and Ms. N.
Sato (all Kitasato University) for various instrumental analyses. We
wish to thank Prof. H. Yamada, Prof. K. Shiomi, Prof. H. Hanaki, and
Mr. M. Iwatsuki (all Kitasato University) for testing the biological
activities and valuable discussions. This work was supported in part
by funds from the Drugs for Neglected Diseases initiative (DNDi),
a grant for All Kitasato Project Study (AKPS), the 21st Century COE
Program, and Ministry of Education, Culture, Sports, Science and
Technology, Japan.
Carboxylic acid (ꢀ)-22 (245 mg, 0.90 mmol) was converted to
(ꢀ)-23 (270 mg, 78%) by the same procedure as that described
above for the formation of (ꢀ)-18. IR nmax (NaCl): 3288 (C]O), 1737,
1731, 1727 (C]O), 1438 (CH), 1201 (C–O) cmꢁ1; 1H NMR (270 MHz,
CDCl3) d
: 6.33 (1H, s, 9-H), 5.72 (1H, s, 9-H), 3.74 (3H, s, 10-OCH3),
3.65 (3H, s, 100-OCH3), 3.47 (1H, t, J¼7.4 Hz, 7-H), 2.18 (2H, t,
J¼7.5 Hz, 2-H2), 1.95–1.53 (2H, complex m, 5-H2), 1.43 (9H, s,
C(CH3)3), 1.40–1.19 (4H, complex m, 3, 4-H2); 13C NMR (67.5 MHz,
CDCl3)
d:
173.7 (C-100), 172.6 (C-1), 166.6 (C-10), 155.7
(NHNHCOC(CH3)3),138.2 (C-8),126.8 (C-9), 81.7 (NHNHCOC(CH3)3),
52.1 (2C, COOCH3ꢃ2), 46.4 (C-7), 33.8 (C-2), 30.9 (C-6), 28.0 (3C,
NHNHCOC(CH3)3), 28.7 (C-4), 27.0 (C-5), 24.9 (C-3). HRMS (FAB, m-
NBA) m/z: 409.1936 [MþNa]þ; calcd for C18H30N2O7Na: 409.1951
[MþNa].
References and notes
ꢀ
1. Hasegawa, Y.; Fukuda, T.; Hagimori, K.; Tomoda, H.; Omura, S. Chem. Pharm.
Bull. 2007, 55, 1338–1341.
2. Dang, A.; Cook, D. E. Biochem. Biophys. Acta 1981, 316–321.
3. (a) Enoki, M.; Honda, Y.; Kuwahara, M.; Watanabe, T. Chem. Phys. Lipids 2002,
120, 9–20; (b) Watanabe, T.; Teranishi, H.; Honda, Y.; Kuwahara, M. Biochem.
Biophys. Res. Commun. 2002, 297, 918–923.
4. Tsukamoto, S.; Yoshida, T.; Hosono, H.; Ohta, T.; Yokosawa, H. Bioorg. Med.
Chem. Lett. 2006, 16, 69–71.
4.3.5. 3-Carboxy-2-methylene-8-methoxycarbonyloctanic acid
((ꢀ)-tensyuic acid B)
Boc-hydrazide (ꢀ)-23 (245 mg, 0.90 mmol) was converted to
(ꢀ)-tensyuic acid B (36 mg, 45%) by the same procedure as that
5. Mangaleswaran, S.; Argade, N. P. J. Org. Chem. 2001, 66, 5259–5261.
6. Dulcere, J.; Mihoubi, M. N.; Rodriguez, J. J. Org. Chem. 1993, 58, 5709–5716.