Benzalazine, acetophenoneazine, and cinnamaldazine
20
15
10
5
Supporting information
Supporting information may be found in the online version of this
article.
Acknowledgements
Thanks are due to the University of Aveiro, FCT and FEDER
for funding the Organic Chemistry Research Unit. This work
was carried out with financial support from the Ministerio de
Educacio´n y Ciencia (Project No. CTQ2006-14487-C02-01/BQU)
and Comunidad Autonoma de Madrid (Project MADRISOLAR, ref.
S-0505/PPQ/0225). Thanks are also due to CTI (CSIC) for allocation
of computer time.
0
2 3JN1C3
2 4JN1'C3
-5
-10
-15
References
[1] (a) F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380; (b) F. H. Allen,
W. D. S. Motherwell, Acta Crystallogr., Sect. B 2002, 58, 407 (CSD
version 5.29 (updated Jan 2008)).
-15
-10
-5
0
5
10
15
20
[2] G. S. Chen, M. Anthamatten, C. L. Barnes, R. Glaser, J. Org. Chem.
Jcalc (Hz)
1994, 59, 4336.
[3] T. G. D. van Schalkwyk, A. M. Stephen, ARKIVOC 2005, xiii, 109.
[4] I. Alkorta, F. Blanco, J. Elguero, ARKIVOC 2008, vii, 48.
[5] F. Blanco, I. Alkorta, J. Elguero, J. Mol. Struct.: Theochem 2007, 847,
25.
Figure 2. Plot of experimental versus calculated coupling constants.
[6] E. Arnal, J. Elguero, R. Jacquier, C. Marzin, J. Wilde, Bull. Soc. Chim. Fr.
1965, 877.
13C CPMAS spectra were recorded at 100.62 MHz on a Bruker
Avance 400 WB spectrometer using a 90◦ pulse of 3 µs, acquisition
time of 50.85 ms, contact time of 4 µs, recycle delay of 5 s, and
a spin rate of 7 kHz. 13C CPMAS spectra were referred to the
glycine and the chemical shifts were recalculated to TMS signal
(δgly = 43.3 ppm). 15N CPMAS spectra were recorded at 40.56 MHz
on a Bruker Avance 400 WB spectrometer using a 90◦ pulse of
3 µs, acquisition time of 49.99 ms, contact time of 4 µs, recycle
delay of 6 s, and a spin rate of 7 kHz. 15N CPMAS spectra were
referred to the glycine and the chemical shifts were recalculated
to nitromethane signal (δgly = −347.6 ppm).
[7] J. Elguero, R. Jacquier, C. Marzin, Bull. Soc. Chim. Fr. 1966, 2132.
[8] J. Elguero, R. Jacquier, C. Marzin, Bull. Soc. Chim. Fr. 1967, 3005.
[9] J. Elguero, R. Jacquier, C. Marzin, Bull. Soc. Chim. Fr. 1968, 713.
[10] J. Elguero, R. Jacquier, C. Marzin, Bull. Soc. Chim. Fr. 1969, 1367.
[11] J. Elguero, R. Jacquier, C. Marzin, Bull. Soc. Chim. Fr. 1969, 1374.
[12] J. Elguero, C. Marzin, J. Berthou, Bull. Soc. Chim. Fr. 1973, 3303.
[13] D. Sanz, M. A. Ponce, R. M. Claramunt, C. Ferna´ndez-Castan˜o,
C. Foces-Foces, J. Elguero, J. Phys. Org. Chem. 1999, 12, 455.
[14] S. Man, J. P. Bouillon, M. Necas, M. Pota´cek, Tetrahedron Lett. 2004,
45, 9419.
[15] D. Sanz, A. Perona, R. M. Claramunt, J. Elguero, Tetrahedron 2005,
61, 145.
[16] N. Naulet, G. J. Martin, Tetrahedron Lett. 1979, 1493.
[17] N. Naulet, M. Beljean, G. J. Martin, Tetrahedron Lett. 1976, 3597.
[18] G. J. Martin, M. L. Martin, J. P. Gouesnard, in NMRBasicPrinciplesand
Progress, 15N NMR Spectroscopy, vol. 18, (Series Editors: P. Diehl,
E. Fluck, R. Kosfeld), Springer-Verlag: Berlin, 1981.
[19] J. Berthou, J. Elguero, R. Jacquier, C. Marzin, C. Rerat, C. R. Acad. Sci.
(Paris) 1967, 265, 513.
In order to optimize chemical shifts and coupling constants
[nJ(1H,1H), nJ(15N,1H), 1J(15N,15N), and nJ(13C,15N)] of compounds
1 and 2, full line-shape iteration was used to fit calculated and
experimentalspectra.Forthispurpose,weusedthegNMRprogram
version 5.0.[24] The starting parameters for nJ(1H,1H) and nJ(15N,1H)
were obtained by simulation from the 1H and proton-coupled 15
N
[20] R. M. Claramunt, C. Lopez, M. A. García, G. S. Denisov, I. Alkorta,
experimental spectra respectively. These coupling constant values
were included in the simulation and iteration of the eight spin-
J. Elguero, New J. Chem. 2003, 27, 734.
[21] (a) F. Blanco, I. Alkorta, J. Elguero, Magn. Reson. Chem. 2007,
45, 797; (b) F. Reviriego, I. Alkorta, J. Elguero, ARKIVOC J. Mol.
Struct. DOI: 10.1016/j.molstruc.2008.04.002 (in press); (c) D. Sanz,
R. M. Claramunt, I. Alkorta, J. Elguero, W. R. Thiel, T. Ru¨ffer (in
preparation).
n
systems for 1b and 2b. Finally, J(13C,15N) values were obtained
from the simulation and iteration of the proton-decoupled 13C
NMR spectra of 1b and 2b. By doing this, excellent agreement
between calculated and experimental spectra was achieved.
[22] (a) N. Schapiro, Ber. 1933, 66, 1103; (b) H. H. Hatt, Org. Synth., Coll.
1943, 2, 395.
[23] R. K. Harris, E. D. Becker, S. M. C. De Menezes, R. Goodfellow,
P. Granger, Pure Appl. Chem. 2001, 73, 1795.
Computational aspects
[24] IvorySoftScientificSoftware,gNMRVersion5.0forwindows,Oxford,
UK, 2004.
[25] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; (b) C. Lee, W. Yang,
R. G. Parr, Phys. Rev. A 1988, 37, 785.
[26] M. J. Frisch, J. A. Pople, R. Krishnan, J. S. Binkley, J. Chem. Phys. 1984,
80, 3265.
[27] V. Barone, R. H. Peralta, R. H. Contreras, J. P. Snyder, J. Phys. Chem.
2002, 106, 5607.
[28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
DFT-optimized geometries of the molecules investigated in this
study have been obtained using the B3LYP functional[25] with
the 6–311++G(d,p) basis set.[26] Vibrational frequencies were
computed to confirm that each species is an equilibrium structure
on the potential energy surface. DFT coupling constants,[27]
including all four terms, were also computed using the same
functional and basis set. All of the DFT calculations were done
using the Gaussian 03 suite of programs.[28]
c
Magn. Reson. Chem. 2008, 46, 859–864
Copyright ꢀ 2008 John Wiley & Sons, Ltd.