Organic Letters
Letter
nanoparticles with an average size of 1.3 nm (Figure S2). The
nanoparticles were also analyzed using energy-dispersive X-ray
spectroscopy (EDX) to confirm the composition of palladium
nanoparticles rather than the Pd−Mn bimetallic particles
(Figure S3). Thus, we establish for the first time that palladium
nanoparticles could be prepared via such a convenient method
using Mn as a reducing agent.19
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences (Grant
No. XDB20000000), “1000-Youth Talents Plan”, NSF of
China (Grant Nos. 21772220 and 21821002), and S&TCSM
of Shanghai (Grant Nos. 17JC1401200 and 18JC1415600).
Based on our data, we propose the mechanism depicted in
Scheme 6. Initially, Pd(OAc)2 is reduced by Mn to generate
Scheme 6. Proposed Reaction Mechanism
REFERENCES
(1) (a) Fuchs, M.; Fu
■
̈
rstner, A. Angew. Chem., Int. Ed. 2015, 54,
3978. (b) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Chem. Rev.
2013, 113, 1313. (c) Cirla, A.; Mann, J. Nat. Prod. Rep. 2003, 20, 558.
́
́ ́
(d) Furst, R.; Zupko, I.; Berenyi, A.; Ecker, G. F.; Rinner, U. Bioorg.
̈
Med. Chem. Lett. 2009, 19, 6948.
(2) (a) Swamy, K. C. K.; Reddy, A. S.; Sandeep, K.; Kalyani, A.
́
Tetrahedron Lett. 2018, 59, 419. (b) Chinchilla, R.; Najera, C. Chem.
Rev. 2014, 114, 1783. (c) de Vries, J. G., Elsevier, C. J., Eds. The
Handbook of Homogeneous Hydrogenation; Wiley-VCH: Weinheim,
2007. (d) Lindlar, H.; Dubuis, R. Org. Synth. 1966, 46, 89.
(3) For homogeneous hydrogenation, see: (a) Pape, F.; Thiel, N. O.;
Teichert, J. F. Chem. - Eur. J. 2015, 21, 15934. (b) Radkowski, K.;
̈
Sundararaju, B.; Furstner, A. Angew. Chem., Int. Ed. 2013, 52, 355.
(c) van Laren, M. W.; Elsevier, C. J. Angew. Chem., Int. Ed. 1999, 38,
3715. For heterogeneous hydrogenation, see: (d) Zhao, X.; Zhou, L.;
Zhang, W.; Hu, C.; Dai, L.; Ren, L.; Zheng, N. Chem. 2018, 4, 1080.
(e) Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.;
Pd(0) catalyst, which may interact with water assisted by Mn
to form palladium hydrides.19,20 Hydrogen could be generated
by reductive elimination from the palladium surface. Indeed,
gas-chromatographic headspace analysis confirmed the for-
mation of molecular hydrogen (Figure S4). Next, the
palladium hydrides could coordinate with an alkyne to
generate complex 11, which undergoes migratory insertion to
deliver complex 12. Upon reductive elimination, cis-alkene 2a
is released and Pd(0) catalyst is regenerated, thereby
completing the catalytic cycle. In addition, cis-alkene 2a
could react with palladium hydride to generate intermediate 13
at elevated temperature, which could undergo β-hydride
elimination to deliver trans-alkene 3a. Alternatively, complex
13 could undergo reductive elimination to give alkane 4a.
In conclusion, we have demonstrated palladium-catalyzed
stereodivergent transfer hydrogenations of alkynes to cis- and
trans-alkenes using water and Mn. The current system operates
under mild conditions and allows for the semihydrogenation of
various alkynes with good yields and stereoselectivity. More
work to better understand the mechanistic intricacies of this
process are currently underway in our laboratory.
́
́
Lopez, N.; Perez-Ramírez, J. Nat. Commun. 2018, 9, 2634. (f) Lu, Y.;
Feng, X.; Takale, B. S.; Yamamoto, Y.; Zhang, W.; Bao, M. ACS Catal.
2017, 7, 8296. (g) Mitsudome, T.; Urayama, T.; Yamazaki, K.;
Maehara, Y.; Yamasaki, J.; Gohara, K.; Kaneda, K. ACS Catal. 2016, 6,
666. (h) Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. J. Am. Chem. Soc. 2015, 137, 13452.
(4) (a) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621. (b) Trost,
B. M. Chem. - Eur. J. 1998, 4, 2405. (c) Johnstone, R. A. W.; Wilby, A.
H.; Entwistle, I. D. Chem. Rev. 1985, 85, 129.
(5) (a) Iwasaki, R.; Tanaka, E.; Ichihashi, T.; Idemoto, Y.; Endo, K.
J. Org. Chem. 2018, 83, 13574. (b) Monfredini, A.; Santacroce, V.;
̀
Marchio, L.; Maggi, R.; Bigi, F.; Maestri, G.; Malacria, M. ACS
Sustainable Chem. Eng. 2017, 5, 8205. (c) Monfredini, A.; Santacroce,
V.; Deyris, P.-A.; Maggi, R.; Bigi, F.; Maestri, G.; Malacria, M. Dalton
Trans. 2016, 45, 15786. (d) Drost, R. M.; Broere, D. L. J.;
Hoogenboom, J.; de Baan, N. S.; Lutz, M.; de Bruin, B.; Elsevier,
C. J. Eur. J. Inorg. Chem. 2015, 2015, 982. (e) Drost, R. M.; Bouwens,
T.; van Leest, N. P.; de Bruin, B.; Elsevier, C. J. ACS Catal. 2014, 4,
1349. (f) Hauwert, P.; Boerleider, R.; Warsink, S.; Weigand, J. J.;
Elsevier, C. J. J. Am. Chem. Soc. 2010, 132, 16900. (g) Hauwert, P.;
Maestri, G.; Sprengers, J. W.; Catellani, M.; Elsevier, C. J. Angew.
Chem., Int. Ed. 2008, 47, 3223. (h) Shen, R.; Chen, T.; Zhao, Y.; Qiu,
R.; Zhou, Y.; Yin, S.; Wang, X.; Goto, M.; Han, L.-B. J. Am. Chem. Soc.
2011, 133, 17037. (i) Belger, C.; Neisius, N. M.; Plietker, B. Chem. -
Eur. J. 2010, 16, 12214. (j) Tani, K.; Ono, N.; Okamoto, S.; Sato, F. J.
Chem. Soc., Chem. Commun. 1993, 386.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(6) (a) Cox, N.; Dang, H.; Whittaker, A. M.; Lalic, G. Org. Synth.
2016, 93, 385. (b) Cox, N.; Dang, H.; Whittaker, A. M.; Lalic, G.
Tetrahedron 2014, 70, 4219. (c) Whittaker, A. M.; Lalic, G. Org. Lett.
2013, 15, 1112. (d) Wang, G.-H.; Bin, H.-Y.; Sun, M.; Chen, S.-W.;
Liu, J.-H.; Zhong, C.-M. Tetrahedron 2014, 70, 2175. (e) Yan, M.; Jin,
T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L.-Y.; Bao, M.; Asao,
N.; Chen, M.-W.; Yamamoto, Y. J. Am. Chem. Soc. 2012, 134, 17536.
(f) Semba, K.; Fujihara, T.; Xu, T.; Terao, J.; Tsuji, Y. Adv. Synth.
Catal. 2012, 354, 1542. (g) Luo, F.; Pan, C.; Wang, W.; Ye, Z.;
Cheng, J. Tetrahedron 2010, 66, 1399.
Text, figures, and table giving experimental procedures
and compound characterization data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(7) (a) Wang, Y.; Huang, Z.; Leng, X.; Zhu, H.; Liu, G.; Huang, Z. J.
Am. Chem. Soc. 2018, 140, 4417. (b) Siva Reddy, A.; Kumara Swamy,
D
Org. Lett. XXXX, XXX, XXX−XXX