C O M M U N I C A T I O N S
Table 2
In summary, we have described a general oxidative Heck reaction
catalyzed by a versatile Pd/bis-sulfoxide catalyst 1 that proceeds with
excellent selectivities for a broad range of non-resonance biased olefins.
Electrophilic catalyst 1 is sensitive to chelation effects from proximal
oxygen and nitrogen moieties that result in excellent regioselectivities
for olefin insertion. It is noteworthy that Pd-H isomerization15 is not
observed under these mild, oxidative conditions as evidenced by
excellent E:Z selectivities (>20:1 in all cases examined), no erosion
in optical purity for proximal stereogenic centers, and a tolerance for
unprotected alcohol moieties. This report represents a significant
expansion in scope for the intermolecular Heck reaction that brings it
a step closer to realizing its tremendous streamlining potential in
complex molecule synthesis.
Acknowledgment. M.C.W. acknowledges the NSF (CAREER
CHE-0548173), Merck, Bristol-Myers Squibb, and Pfizer for financial
support. Sigma-Aldrich is thanked for a generous gift of Pd(II)/
sulfoxide catalyst 1 and a Graduate Innovation Award to J.H.D. E.
Stang confirmed entry 7, Table 1.
Supporting Information Available: Experimental procedures, full
characterization, complete ref 8a, and additional experiments. This material
a 2,6-Dimethylbenzoquinone (2 equiv.), AcOH (4 equiv.), boronic
ester (1.5 equiv.), dioxane (1.0 M), rt, 48 h. b BQ (2 equiv.), AcOH (4
equiv.), ArBF3K (1.5 equiv.), B(OH)3 (2.0 equiv.), dioxane (0.33 M), rt,
4 h. c Crude int.:term. ) 16:1.
formed for all substrates eValuated (Table 1 and 2). Selective Heck
arylations for amino acid-derived pent-4-enones, -enoic acids, and -enoates
like (-)-5, (+)-6, and (+)-7 require different Pd(0) catalyst systems that
must be empirically determined through extensive ligand and additive
screens (Table 1, entries 4-6).8 In contrast, the versatile Pd(II)/bis-sulfoxide
complex 1 is a general catalyst, furnishing a wide range of coupled
products in uniformly good yields and outstanding selectivities. Finally,
standard Heck arylations with olefinic alcohols give aldehyde or ketone
products via palladium hydride mediated migration of the double bond.9
Chiral bis-homoallylic alcohols undergo 1-catalyzed oxidative Heck
arylation without oxidation or erosion in optical purity (Table 1, entry 7;
Table 2). Interestingly, bis-homoallylic thioethers which are often incom-
patible moieties with Pd(II)-mediated catalysis serve as excellent directing
groups in this reaction (Table 1, entry 8).
We found that under our oxidative, acidic Heck arylation conditions
we could rapidly synthesize 4-arylated-but-2-enoates and -enones
generally as single olefin isomers (Table 1, entries 9-12). This method
represents the state-of-the-art for synthesizing arylated R,ꢀ-unsaturated
esters with strongly electron deficient aryl moieties. Horner-Wad-
sworth-Emmons (HWE) routes to compounds 12 and 13 afford the
styrenyl compounds as the major isomer (Table 1, entries 11 and 12).10
References
(1) For reviews, see: (a) Bra¨se, S.; de Meijere, A. Metal-Catalyzed Cross-Coupling
Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: New York,
2004; Chapter 5. (b) Dounay, A. B.; Overman, L. E. Chem. ReV. 2003,
103, 2945. (c) Crisp, G. T. Chem. Soc. ReV. 1998, 27, 427. (d) Cabri, W.;
Candiani, I. Acc. Chem. Res. 1995, 28, 2. (e) Heck, R. F. ComprehensiVe
Organic Synthesis; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol.
4,Chapter 4.3.
(2) Aryl chlorides: (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
6989. Disubstituted alkenes: (b) Gu¨rtler, C.; Buchwald, S. L. Chem. Eur.
J. 1999, 5, 3107. (c) Internal olefins react poorly in our system (Supporting
Information).Allyltrimethylsilanes: (d) Jeffery, T. Tetrahedron Lett. 2000, 41,
8445.
(3) (a) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076. Our
discovery of the acetate directing effect for the Heck appears general: (b) Pan,
D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.; Zhang, L.;
Jiao, N. Angew. Chem., Int. Ed. 2008, 47, 4729.
(4) Oxidative Heck reactions: (a) Cho, C. S.; Uemura, S. J. Organomet. Chem.
1994, 465, 85. (b) Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A.; Nishikata,
T.; Hagiwara, N.; Kawata, K.; Okeda, T.; Wang, H.; Fugami, K.; Kosugi,
M. Org. Lett. 2001, 3, 3313. (c) Yoo, K. S.; Yoon, C. H.; Jung, K. W.
J. Am. Chem. Soc. 2006, 128, 16384. (d) Lindh, J.; Enquist, P.; Pilotti, A.;
Nilsson, P.; Larhed, M. J. Org. Chem. 2007, 72, 7957.
(5) Transmetallation of ArB(OH)2 with cationic Pd: (a) Nishikata, T.; Yamamoto,
Y.; Miyaura, N. Angew. Chem., Int. Ed. 2003, 42, 2768. 1 catalyzes CsH
oxidation and aminations: (b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.;
White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (c) Reed, S. A.; White,
M. C. J. Am. Chem. Soc. 2008, 130, 3316.
(6) Other examples of chelate-controlled Heck: (a) Filippini, L.; Gusmeroli, M.;
Riva, R. Tetrahedron Lett. 1993, 34, 1643. (b) Kang, S.-K.; Lee, H.-W.;
Jang, S.-B.; Kim, T.-H.; Pyun, S.-J. J. Org. Chem. 1996, 61, 2604. (c)
Olofsson, K.; Sahlin, H.; Larhead, M.; Hallberg, A. J. Org. Chem. 2001,
66, 544. (d) Buezo, N. D.; Rosa, J. C.; Priego, J.; Alonso, I.; Carretero,
J. C. Chem. Eur. J. 2001, 7, 3890.
(7) (a) Gangjee, A.; Zeng, Y.; McGuire, J. J.; Kisliuk, R. L. J. Med. Chem.
2005, 48, 5329. (b) Lambert, J.; Rice, J.; Hong, J.; Hou, J.; Yang, C. Bioorg.
Med. Chem. Lett. 2005, 15, 873.
(8) 5: (a) Wu, Y. Q.; et al. J. Med. Chem. 2002, 45, 3558. 6: (b) Whitehouse,
D.; Hu, S.; Van Zandt, M. C.; Parker, G. U.S. Patent 055725, 2006. 7: (c)
Hirano, N.; Inoue, H.; Nagahara, T.; Ohyama, T.; Kaino, M.; Hayashi, K.;
Hara, S.; Suzuki, R. U.S. Patent 068213, 2006.
(9) (a) Larock, R.; Leung, W.-Y.; Stolz-Dunn, S. Tetrahedron Lett. 1989, 30,
6629. (b) Berthiol, F.; Doucet, H.; Santelli, M. Synthesis 2005, 20, 3589.
(10) 12: (a) Angelaud, R.; Zhong, Y.-L.; Maligres, P.; Lee, J.; Askin, D. J.
Org. Chem. 2005, 70, 1949. 13: (b) Kanuma, K.; Nishiguchi, M.; Funakoshi,
T.; Chaki, S.; Nagase, Y.; Iida, I.; Yamaguchi, J.; Semple, G.; Tran, T.;
Sekiguchi, Y. Bioorg. Med. Chem. 2006, 14, 3307.
(11) t-Butyl ethylene and PhSnBu3 coupled in 60% yield (see Supporting Informa-
tion).
(12) 16: Gaeta, F. C. A.; Lehman de Gaeta, L. S.; Kogan, T. P.; Or, Y.; Foster,
C.; Czarniecki, M. J. Med. Chem. 1990, 33, 964.
In addition to the demonstrated broad range of aryl boronic acids,
styrenylpinacol boronic esters, aryl potassium trifluoroborates, and aryl
stannanes are also competent coupling partners (Table 2).11 Optically
enriched allylic ethers and amines couple with styrenylpinacol boronic
esters to form stereochemically defined (E,E)-dienes in good yields,
outstanding stereoselectivities (>20:1), and no erosion in enantiopurity.
In an example of synthetic streamlining, diene (-)-16, an intermediate
toward a myosin light chain kinase inhibitor, was synthesized in two
fewer steps and 20% higher overall yield using an oxidative Heck
route rather than the alternative olefination route beginning from the
same starting material.12 Indole potassium trifluoroborate was found
to be a competent transmetallating reagent in a reaction to generate
19 upon addition of 2 equiv. of boric acid.13
Substantial steric bulk is tolerated on the olefin substrate in this
intermolecular Heck reaction without diminished reactivity. Even an
R-olefin comprising a quaternary center and adjacent to an exocyclic
methyl group underwent oxidative Heck arylation via relatively mild
conditions to afford 21, a glucocorticoid receptor modulator, in
preparatively useful yields (eq 1).14
(13) Boric acid is likely a fluoride acceptor that opens a p-orbital on the aryl boron
for transmetallation. For a review of these reagents, see: Molander, G. A.;
Ellis, N. Acc. Chem. Res. 2007, 40, 275. and references therein.
(14) Duan, J.; Lu, Z.; Weinstein, D.; Jiang, B. U.S. Patent 138373, 2006.
(15) A PdH(OAc) intermediate should be short-lived under these oxidative
conditions [PdH(OAc) + AcOH T Pd(0) + 2 AcOH + BQ f Pd(II)OAc2 +
DHQ). For an important study on PdH in Heck reactions, see: Hills, I. D.; Fu,
G. C. J. Am. Chem. Soc. 2004, 126, 13178.
JA804120R
9
J. AM. CHEM. SOC. VOL. 130, NO. 34, 2008 11271