Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C5CC04151A
COMMUNICATION
ChemComm
and eventually other side-products like octadecadiene,
heptadecene and hepatdecadiene.
images were obtained using the equipment purchased
within CePT Project No. POIG.02.02.00-14-024/08-00.
The optical band gap of CZTS-4 (kesterite), was
determined on the basis of UV-vis absorption spectroscopy
as 1.65 eV (see Fig. S7, ESI†). The slightly increased value as
compared to the values calculated theoretically (1.56 eV)
and measured experimentally (1.4-1.6 eV) for bulk
kesterite17 could be indicative of quantum confinement
effects. The Bohr exciton radius of kesterite, calculated on
the basis of available literature data,16 is rather small (in the
range of 2.2 to 3.4 nm, depending on assumptions used for
the calculations), hence NCs of 3.0 +/-0.9 nm size,
described here should reveal quantum confinement, as
observed experimentally.
Notes and references
1
(a) K. Ramasamy, M. A. Malik, P. O’Brien, Chem.
Commun., 2012, 48, 5703; (b) S. Chen, A. Walsh, X.-G.
Gong, S.-H. Wei, Adv. Mater., 2013, 25, 1522; (c) U.
Ghorpade, M. Suryawanshi, S. W. Shin, K. Gurav, P. Patil,
S. Pawar, C. W. Hong, J. H. Kim, S. Kolekar, Chem.
Commun., 2014, 50, 11258.
2
3
H. Yang, L. A. Jauregui, G. Zhang, Y. P. Chen, Y. Wu, Nano
Lett., 2012, 12, 540.
(a) H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki,
H. Araki, A. Takeuchi, Thin Solid Films, 2009, 517, 2455;
(b) S. Siebentritt, S. Schorr, Prog. Photovolt. Res. Appl.,
2012, 20, 512.
In the UV-vis-NIR spectrum of the wurtzite-type NCs
CZTS-1 (Fig. S7, ESI†) no broad absorption band in the NIR
4
5
W.-C. Hsu, H. Zhou, S. Luo, T.-B. Song, Y.-T. Hsieh, H.-S.
Duan, S. Ye, W. Yang, C.-J. Hsu, C. Jiang, B. Bob, Y. Yang,
ACS Nano, 2014, 8, 9164.
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K.
Todorov, Y. Zhu, D. B. Mitzi, Adv. Energy Mater., 2014, 4,
spectral range was observed. This can be taken as an
additional proof of phase purity since the NIR band has
been attributed to the heterophase system Cu1.92S-CZTS.9d
We have determined the optical band gap to be 1.75 eV, i.e.
significantly higher than the value reported for wurtzite-
type CZTS NCs (1.4-1.5 eV).9 It should be however noted
that the literature values were measured for nanoparticles
exceeding 20 nm in size, whereas the NCs reported here are
much smaller (6.0 +/-2.0 nm). Furthermore, band gap
variation arising from deviation from the 2:1:1:4
stoichiometry is not taken into account.
1301465.
D. Aldakov, A. Lefrançois, P. Reiss, J. Mater. Chem. C,
2013, , 3756.
6
7
1
(a) T. Kameyama, T. Osaki, K.-ichi. Okazaki, T. Shibayama,
A. Kudo, S. Kuwabata, T. Torimoto, J. Mater. Chem., 2010,
20, 5319; (b) T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, B.
Kunert, F. Hofer, R. Resel, G. Trimmel, Sol. Energy Mater.
Sol. Cells, 2012, 101, 87; (c) A. Shavel, D. Cadavid, M.
Ibáñez, A. Carrete, A. Cabot, J. Am. Chem. Soc., 2012, 134
1438.
,
8
9
(a) C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X. Chen, S.
Huang, CrystEngComm, 2011, 13, 3310; (b) A. Khare, A.
W. Wills, L. M. Ammerman, D. J. Norris, E. S. Aydil, Chem.
Commun., 2011, 47, 11721; (c) M. D. Regulacio, C. Ye, S.
H. Lim, M. Bosman, E. Ye, S. Chen, Q.-H. Xu, M.-Y. Han,
Chem. Eur. J., 2012, 18, 3127.
(a) X. Lu, Z. Zhuang, Q. Peng, Y. Li, Chem. Commun., 2011,
47, 3141; (b) A. Singh, H. Geaney, F. Laffir, K. M. Ryan, J.
Am. Chem. Soc., 2012, 134, 2910; (c) M. Li, W.-H. Zhou, J.
Guo, Y.-L. Zhou, Z.-L. Hou, J. Jiao, Z.-J. Zhou, Z.-L. Du, S.-X.
Wu, J. Phys. Chem. C, 2012, 116, 26507; (d) H.-C. Liao, M.-
H. Jao, J.-J. Shyue, Y.-F. Chen, W.-F. Su, J. Mater. Chem. A,
Conclusions
To summarize, we have presented a new method for the
phase-controlled synthesis of small sized CZTS NCs of
narrow size distribution through the introduction of the
new tin precursor tin(II) 2-ethylhexanoate. Used in a
heating-up method with DDT as the sulfur source, it leads
to wurtzite-type NCs, while a hot-injection method using
the same set of precursors but S/OLA as the sulfur source
yields NCs in the kesterite phase. The two types of CZTS NCs
exhibit distinct differences in surface chemistry involving
ligand transformation in the case of the kesterite NCs. An
increased optical band gap with respect to literature data
for bulk kesterite CZTS is observed, indicative of quantum
confinement effects. The fine-control of the composition,
crystal structure and band gap allow for the study of the
influence of these parameters on the properties of
optoelectronic devices using CZTS NCs, enabling
optimization of their performance.
2013, 1, 337; (e) J. Chang, E. R. Waclawik, CrystEngComm,
2013, 15, 5612.
10 Y. Zou, X. Su, J. Jiang, J. Am. Chem. Soc., 2013, 135, 18377.
11 Z. Li, A. L. K. Lui, K. H. Lam, L. Xi, Y. M. Lam, Inorg. Chem.,
2014, 53, 10874.
12 R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater.,
2000, 12, 1841.
13 G. Gabka, P. Bujak, M. Gryszel, K. Kotwica, A. Pron, J.
Phys. Chem. C, 2015, 119, 9656.
14 V. T. Tiong, Y. Zhang, J. Bell, H. Wang, CrystEngComm.,
2014, 16, 4306.
15 P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha, J. Alloys
Compd., 2011, 509, 7600-7606.
16 (a) K. M. Nam, J. H. Shim, H. Ki, S.-I. Choi, G. Lee, J. K.
Jang, Y. Jo, M.-H. Jung, H. Song, J. T. Park, Angew. Chem.
Int. Ed., 2008, 47, 9504; (b) S. Mourdikoudis, L. M. Liz-
Marzán, Chem. Mater., 2013, 25, 1465.
This research was carried out in the framework of the
project entitled “New solution processable organic and
hybrid (organic/inorganic) functional materials for
electronics, optoelectronics and spintronics” (Contract No.
TEAM/2011-8/6), which is operated within the Foundation
for the Polish Science Team Programme cofinanced by the
EU European Regional Development Fund. One of the
authors (P.B.) wants to acknowledge a partial financial
support of the Warsaw University of Technology. The TEM
17 C. Persson, J. Appl. Phys., 2010, 107, 053710.
4 | Chem. Commun., 2015, 00, 1-3
This journal is © The Royal Society of Chemistry 2015
Please do not adjust margins