labeling of proteins by utilizing affinity for tetracysteine
motifs.7 However, despite the potential of mercurated
fluoresceins for spectroscopy-based chemosensing, chemo-
sensor studies using these compounds have not been reported,
except for assays of sulfur compounds like hydrogen sulfide,8
disulfide, or thiols by fluorescence quenching.9 In this paper,
we report the selective chemodosimetric Hg2+ signaling
behaviors of simple structured fluorescein derivatives. Dichlo-
rofluorescein and its methyl ester derivative (Scheme 1)
and derivative 3 where the hydroxyl substituents on the
xanthene moiety of 1 are functionalized as pivaloyl esters.
Dichlorofluorescein 1 exhibited characteristic absorption
bands at 475 and 505 nm in acetate-buffered aqueous 10%
DMSO solution (pH 5.0) (Figure 1). Upon treatment with
Scheme 1. Structures of Dichlorofluoresceins Investigated
Figure 1. UV-vis spectra of dichlorofluorescein 1 in the presence
of various metal ions in H2O/DMSO (90:10) at pH 5.0 (10 mM
acetate buffer). [1] ) 1.0 × 10-5 M, [Mn+] ) 1.0 × 10-3 M. Inset:
solution color of 1 in the absence and presence of Hg2+ ions.
showed pronounced Hg2+-selective chromogenic and fluo-
rogenic signaling behaviors in an aqueous environment via
selective mercuration of the 4′,5′-position of the xanthene
moiety. The development of selective and sensitive signaling
systems for the determination of Hg2+ ions10 is very
important due to the toxic impact of mercury on the
environment.11
Hg2+ ions, the absorption bands at 475 and 505 nm were
gradually decreased and red-shifted to 483 and 533 nm
(Figure S1, Supporting Information). The color of the
solution changed from yellowish green to orange (inset of
Figure 1). Other metal ions induced some variation in
absorbance without significantly changing the absorption
maximum. Selectivity toward Hg2+ ions was assessed by the
ratiometric analysis of changes in absorption spectra. An
absorbance ratio (A533/A483) of the two characteristic bands
at 533 and 483 nm was used to illustrate the selective
signaling of dichlorofluorescein toward Hg2+ ions. The ratio
of A533/A483 was 1.02 for Hg2+ ions and varied in a limited
range from 0.058 (Ni2+) to 0.085 (Ag+) for the other metal
ions (Figure S2, Supporting Information).
The fluorogenic behavior of 1 was investigated under
the same conditions, and 1 revealed a strong emission band
around 528 nm (Figure 2). The characteristic fluorescence
spectrum of 1 was effectively quenched upon treatment
with Hg2+ ions. The quenching efficiency can be expressed
by the ratio of Io/I at 528 nm (Io and I represent the
fluorescence intensity of 1 in the absence and in the
presence of metal ions, respectively); Io/I was larger than
1900 for Hg2+ ions (Figure S3, Supporting Information).
Other metal ions did not induce noticeable changes in the
fluorescence emission of 1; Io/I ranged from 1.03 for K+
to 1.27 for Ni2+. The color of the solution significantly
changed from bright green to almost colorless when
illuminated with a hand-held UV lamp (inset of Figure
2). Although this type of ON-OFF fluorescence signaling
is not so appropriate for quantifying analytes, the chro-
mogenic responses of this system facilitate the detection
of Hg2+ ions by the naked eye.
The surveyed compounds are dichlorofluorescein 1, methyl
ester derivative 2 (formed from the lactone moiety of 1),
(6) (a) Komatsu, H.; Iwasawa, N.; Citterio, D.; Suzuki, Y.; Kubota, T.;
Tokuno, K.; Kitamura, Y.; Oka, K.; Suzuki, K. J. Am. Chem. Soc. 2004,
126, 16353. (b) Guo, X.; Zhang, D.; Tao, H.; Zhu, D. Org. Lett. 2004, 6,
2491. (c) Nolan, E. M.; Jaworski, J.; Okamoto, K.-I.; Hayashi, Y.; Sheng,
M.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127, 16812. (d) He, F.; Tang,
Y.; Wang, S.; Li, Y.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 12343. (e) Liu,
W.; Xu, L.; Sheng, R.; Wang, P.; Li, H.; Wu, S. Org. Lett. 2007, 9, 3829.
(f) Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J. Angew. Chem.,
Int. Ed. 2007, 46, 6658.
(7) Mayer, M. U.; Shi, L.; Squier, T. C. Mol. BioSyst. 2005, 1, 53.
(8) Wronski, M. Anal. Chem. 1971, 43, 606.
(9) Choi, M. M. F. Analyst 1998, 123, 1631.
(10) (a) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270,
and references therein. (b) Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc.
2004, 126, 2272. (c) Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S.-K. J.
Org. Chem. 2004, 69, 181. (d) Chen, P.; He, C. J. Am. Chem. Soc. 2004,
126, 728. (e) Ono, A.; Togashi, H. Angew. Chem., Int. Ed. 2004, 43, 4300.
(f) Ros-Lis, J. V.; Marcos, M. D.; Mart´ınez-Ma´n˜ez, R.; Rurack, K.; Soto,
J. Angew. Chem., Int. Ed. 2005, 44, 4405. (g) Zhang, H.; Han, L.-F.;
Zachariasse, K. A.; Jiang, Y.-B. Org. Lett. 2005, 7, 4217. (h) Yoon, S.;
Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127,
16030. (i) Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu,
J.-G. Org. Lett. 2006, 8, 859. (j) Coskun, A.; Akkaya, E. U. J. Am. Chem.
Soc. 2006, 128, 14474. (k) Lee, M. H.; Cho, B.-K.; Yoon, J.; Kim, J. S.
Org. Lett. 2007, 9, 4515. (l) Kim, J. S.; Choi, M. G.; Song, K. C.; No,
K. T.; Ahn, S.; Chang, S.-K. Org. Lett. 2007, 9, 1129. (m) Xue, X.; Wang,
F.; Liu, X. J. Am. Chem. Soc. 2008, 130, 3244. (n) Shi, W.; Ma, H. Chem.
Commun. 2008, 1856. (o) Zhan, X.-Q.; Qian, Z.-H.; Zheng, H.; Su, B.-Y.;
Lan, Z.; Xu, J.-G. Chem. Commun. 2008, 1859.
(11) (a) Boening, D. W. Chemosphere 2000, 40, 1335. (b) Tchounwou,
P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. EnViron. Toxicol. 2003,
18, 149.
3718
Org. Lett., Vol. 10, No. 17, 2008