Communication
ChemComm
C. K. Donawho, D. J. Frost, F. G. Buchanan, G. T. Bukofzer,
L. E. Rodriguez, V. Bontcheva-Diaz, J. J. Bouska, D. J. Osterling,
A. M. Olson, K. C. Marsh, Y. Luo and V. L. Giranda, J. Med. Chem.,
2010, 53, 3142.
3 (a) D. Xiao, B. J. Lavey, A. Palani, C. Wang, R. G. Aslanian,
J. A. Kozlowski, N.-Y. Shih, A. T. McPhail, G. P. Randolph,
J. E. Lachowicz and R. A. Duffy, Tetrahedron Lett., 2005, 46, 7653;
(b) T. Harrison, B. J. Williams and C. J. Swain, Bioorg. Med. Chem.
Lett., 1994, 4, 2733.
Scheme 6 Lithiation-substitution of various N-Boc-2-arylpiperidines.
4 (a) D. Xiao, C. Wang, A. Palani, H.-C. Tsui, G. Reichard, S. Paliwal,
N.-Y. Shih, R. Aslanian, R. Duffy, J. Lachowicz, G. Varty, C. Morgan,
F. Liu and A. Nomeir, Bioorg. Med. Chem. Lett., 2010, 20, 6313;
(b) D. Xiao, C. Wang, H.-C. Tsui, A. Palani, R. Aslanian and
A. V. Buevich, Tetrahedron Lett., 2013, 54, 6199.
5 (a) N. S. Sheikh, D. Leonori, G. Barker, J. D. Firth, K. R. Campos,
A. J. H. M. Meijer, P. O’Brien and I. Coldham, J. Am. Chem. Soc.,
2012, 134, 5300; for further examples, see; (b) T. K. Beng, J. S. Woo
and R. E. Gawley, J. Am. Chem. Soc., 2012, 134, 14764.
and with no loss of enantioselectivity (Scheme 6). Similarly, piperi-
dines (R)-3c (er 94 : 6) and (R)-3d (er 97 : 3) gave the products 4c, 5c,
and 4d with good yields and very little reduction in er. Based on
related chemistry using piperidine 3a,5 we assume that the absolute
configuration of these products is as shown, in which lithiation and
electrophilic quench occur with retention of configuration.
6 I. Coldham, S. Raimbault, D. T. E. Whittaker, P. T. Chovatia,
D. Leonori, J. J. Patel and N. S. Sheikh, Chem. – Eur. J., 2010,
16, 4082.
7 T. K. Beng and R. E. Gawley, Org. Lett., 2011, 13, 394.
8 For some reviews, see (a) V. P. Krasnov, D. A. Gruzdev and
G. L. Levit, Eur. J. Org. Chem., 2012, 1471; (b) H. Pellissier, Adv.
Synth. Catal., 2011, 353, 1613. For some recent examples with 2-
substituted piperidines, see; (c) M. Binanzer, S.-Y. Hsieh and
J. W. Bode, J. Am. Chem. Soc., 2011, 133, 19698; (d) S.-Y. Hsieh,
M. Binanzer, I. Kreituss and J. W. Bode, Chem. Commun., 2012,
48, 8892; (e) I. Kreituss, Y. Murakami, M. Binanzer and J. W. Bode,
Angew. Chem., Int. Ed., 2012, 51, 10660; ( f ) S.-Y. Hsieh, B. Wanner,
P. Wheeler, A. M. Beauchemin, T. Rovis and J. W. Bode, Chem. – Eur.
J., 2014, 20, 7228.
9 (a) N. C. Faibish, Y. S. Park, S. Lee and P. Beak, J. Am. Chem. Soc.,
1997, 119, 11561; (b) S. V. Kessar, P. Singh, K. N. Singh,
P. Venugopalan, A. Kaur, P. V. Bharatam and A. K. Sharma, J. Am.
Chem. Soc., 2007, 129, 4506. For some other kinetic resolutions by
deprotonation, see; (c) J. Becker, R. Froehlich, K. Salorinne and
D. Hoppe, Eur. J. Org. Chem., 2007, 3337; (d) J. Granander, F. Secci,
P. O’Brien and B. Kelly, Tetrahedron: Asymmetry, 2009, 20, 2432.
10 See, for example, (a) I. Coldham and D. Leonori, Org. Lett., 2008,
10, 3923; (b) S. Seel, T. Thaler, K. Takatsu, C. Zhang, H. Zipse,
B. F. Straub, P. Mayer and P. Knochel, J. Am. Chem. Soc., 2011,
133, 4774; (c) K. D. Hesp, D. P. Fernando, W. Jiao and
A. T. Londregan, Org. Lett., 2014, 16, 413; (d) Z. Zuo and
D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136, 5257. See also;
(e) D. Stead, G. Carbone, P. O’Brien, K. R. Campos, I. Coldham and
A. Sanderson, J. Am. Chem. Soc., 2010, 132, 7260; ( f ) G. Barker,
J. L. McGrath, A. Klapars, D. Stead, G. Zhou, K. R. Campos and
P. O’Brien, J. Org. Chem., 2011, 76, 5936; (g) Z. Cui, H.-J. Yu,
R.-F. Yang, W.-Y. Gao, C.-G. Feng and G.-Q. Lin, J. Am. Chem. Soc.,
2011, 133, 12394; (h) A. Millet, P. Larini, E. Clot and O. Baudoin,
Chem. Sci., 2013, 4, 2241; (i) C.-V. T. Vo and J. W. Bode, J. Org. Chem.,
2014, 79, 2809.
The chiral base n-BuLi with (À)-sparteine or the (+)-sparteine
surrogate is effective for the kinetic resolution of racemic N-Boc-2-
arylpiperidines in PhMe. The recovered starting material can be
isolated with high enantiomer ratios, especially if n-BuLi and the
chiral ligand are not pre-mixed. Use of in situ IR spectroscopy
helped to optimise the conditions for the kinetic resolution. By
using a trialkyltin halide electrophile, the quenched product can be
recycled by tin–lithium exchange and protonation. After kinetic
resolution, the recovered enantioenriched N-Boc-2-arylpiperidines
can be deprotonated with n-BuLi in THF at À78 1C and quenched
with electrophiles without loss of enantiopurity to provide highly
enantioselective syntheses of 2,2-disubstituted piperidine products.
We thank the EPSRC, the University of Sheffield and Astra-
Zeneca for funding.
11 W. F. Bailey, P. Beak, S. T. Kerrick, S. Ma and K. B. Wiberg, J. Am.
Chem. Soc., 2002, 124, 1889.
12 (a) J. L. Rutherford, D. Hoffmann and D. B. Collum, J. Am. Chem.
Soc., 2002, 124, 264; (b) C. Strohmann, K. Strohfeldt and
D. Schildbach, J. Am. Chem. Soc., 2003, 125, 13672.
Notes and references
13 Using the equation krel = ln[(1 À C)(1 À ee)]/ln[(1 À C)(1 + ee)]
according to H. B. Kagan and J. C. Fiaud, Top. Stereochem., 1988,
18, 249.
1 See, for example, (a) D. A. Horton, G. T. Bourne and M. L. Smythe,
Chem. Rev., 2003, 103, 893; (b) S. Hardy and S. F. Martin, Org. Lett.,
2011, 13, 3102.
2 T. D. Penning, G.-D. Zhu, J. Gong, S. Thomas, V. B. Gandhi, X. Liu, 14 P. O’Brien, Chem. Commun., 2008, 655.
Y. Shi, V. Klinghofer, E. F. Johnson, C. H. Park, E. H. Fry, 15 X. Li and I. Coldham, J. Am. Chem. Soc., 2014, 136, 5551.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 9910--9913 | 9913