5072
T. Sueda et al. / Tetrahedron Letters 49 (2008) 5070–5072
7. For MnO2, see: (a) Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc.
Table 5
Relative proton affinity (RR0CꢀONO2?RR0C(H)ONO2)a
1968, 90, 5616; For PDC, see: (b) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1980,
731; For RuCl2(PPh3)3/tert-BuOOH, see: (c) Murahashi, S.-I.; Naota, T.;
Nakajima, N. Tetrahedron Lett. 1985, 26, 925; Murahashi has also reported the
palladium-catalyzed decarbonylation of aroyl cyanides to give the
corresponding aromatic nitriles, see: (d) Murahashi, S.-I.; Naota, T.; Nakajima,
N. J. Org. Chem. 1986, 51, 898.
R
R0
B3LYP/6-311+G(2d,p)
MP2/6-311+G(2d,p)
Ph
Me
Ph
H
+34.59
+20.19
0
+31.82
+19.38
0
CN
CN
CN
8. Molina, P.; López-Leonardo, C.; Llamas-Botía, J.; Foces-Foces, C.; Fernández-
Castaño, C. Tetrahedron 1996, 52, 9629.
p-MeOC6H4
+4.17
+3.45
9. (a) Gonzalez, A.; Galvez, C. Synthesis 1983, 212; (b) Olah, G. A.; Malhotra, R.;
Narang, S. C. J. Org. Chem. 1978, 43, 4628; (c) Freeman, J. P.; McKusick, B. C..
Organic Synthesis Coll.. In Vol. V; Wiley: New York, 1973. p 839.
a
All values (in kcal/mol) are calculated for 298 K and 1 atm. Enthalpies were
calculated by using HF/6-31+G(d) optimized geometry.
10. Base-induced elimination of
J. Am. Chem. Soc. 1961, 83, 193; (b) Kornblum, N.; Frazier, H. W. J. Am. Chem. Soc.
1966, 88, 865; Base-induced -elimination reaction of benzyl nitrate is in
a-hydrogen, see: (a) Letsinger, R. T.; Jamison, J. D.
(150 MHz, CDCl3) d 131.6, 129.6, 128.7, 127.7, 114.2, 71.0; IR
(CHCl3) 1668, 1281, 1263, 827 cmꢀ1; HRMS Calcd for C8H6N2O3:
178.0378. Found: 178.0381; Anal. Calcd for C8H6N2O3: C, 53.94;
H, 3.39; N, 15.73. Found: C, 53.55; H, 3.51; N, 15.48. For 2b:
mp = 45–46 °C; 1H NMR (400 MHz, CDCl3) d 7.48 (d, J = 8.7 Hz,
2H), 6.99 (d, J = 8.7 Hz, 2H), 6.29 (s, 1H), 3.85 (s, 3H); 13C NMR
(150 MHz, CDCl3) d 162.1, 130.6, 119.4, 114.9, 114.4, 70.9, 55.5;
; HRMS Calcd for
C9H8N2O4: 208.0484. Found: 208.0482; Anal. Calcd for C9H8N2O4:
C, 51.93; H, 3.87; N, 13.46. Found: C, 52.08; H, 3.96; N, 13.36.
a
accordance with a concerted process, see: (c) Smith, P. J.; Bourns, A. N. Can. J.
Chem. 1966, 44, 2553; (d) Buncel, E.; Bourns, A. N. Can. J. Chem. 1960, 38, 2457;
Elimination of a-hydrogen under acidic conditions, see: (e) Ross, S. D.; Coburn,
E. R.; Finkelstein, M. J. Org. Chem. 1968, 33, 585.
11. Suzuki has reported the reaction of arylmalononitriles with nitric acid to afford
organonitrate intermediates, which are decomposed to aroyl cyanides, see:
Suzuki, H.; Koide, H.; Ogawa, T. Bull. Chem. Soc. Jpn. 1988, 61, 501.
12. General procedure for the synthesis of 3:
A
mixture of
a-
IR (CHCl3) 1665, 1283, 1256, 833 cmꢀ1
bromophenylacetonitrile 1a (196.0 mg, 1 mmol) and AgNO3 (220.8 mg,
1.3 mmol) in CH3CN (10 ml) was heated for 5 h at 50 °C under N2. After
cooling, the solvent was evaporated in vacuo, then hexane or CH2Cl2 was
added. Filtration and the filtrate was evaporated in vacuo to give a colorless
solid. The reaction crude was recrystallized from hexane at ꢀ78 °C to yield the
pure benzoyl cyanide 3a (103.9 mg, 79%) as a white solid. The 1H NMR, IR, and
GC–MS data of 3a were in good agreement with those of an authentic sample.
Acknowledgement
13.
a
-Nitrooxydecanenitrile was synthesized from the reaction of
a-
iododecanenitrile with AgNO3 at 50 °C. No reaction occurred when 2-
The present work was supported by a research grant from JSPS
KAKENHI (16790012).
bromodecanenitrile was used as
conditions.
a substrate under the same reaction
14. Baker, J. W.; Heggs, T. G. J. Chem. Soc. 1955, 616.
References and notes
15. All calculations reported here were performed using the Gaussian 98M
(revision A.11.). Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery Jr., J. A.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin,
K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.;
Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.;
Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.;
Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong,
M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.
Gaussian, Inc., Pittsburgh PA, 2001.
1. For reviews, see: (a) Klamann, D. In Houben-Weyl Methoden der Organischen
Chemie; Georg Thime Verlag: Stuttgart, Germany, 1992; Vol. E16c, pp 23–66;
(b) Boschan, R.; Merrow, R. T.; van Dolah, R. W. Chem. Rev. 1955, 55, 485.
2. Baker, J. W.; Easty, D. M. J. Chem. Soc. 1952, 1208.
3. (a) Ross, S. D.; Coburn, E. R.; Finkelstein, M. J. Org. Chem. 1968, 33, 585; (b)
Kornblum, N.; Frazier, H. W. J. Am. Chem. Soc. 1966, 88, 865.
4. For review, see: Hunig, S.; Schaller, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 36.
5. Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2113.
6. (a) Ando, T.; Kawate; Yamawaki, J.; Hanafusa, T. Synthesis 1983, 637; (b) Sukata,
K. Bull. Chem. Soc. Jpn. 1987, 60, 1085; (c) Koenig, K. E.; Weber, W. P. Tetrahedron
Lett. 1974, 2275.