M. Bubenyák et al. / Tetrahedron Letters 49 (2008) 4937–4940
4939
tution of 5 or condensation of 3-ketone 6 with excess phenyl
hydrazine in ethanol afforded 3-phenylhydrazone 8 in excellent
yield (89% and 95%, respectively).
improved solubility (which will then allow their biological evalua-
tion) is in progress and will be described later.
Vilsmeier–Haack formylation of 4 using 2 equiv of phosphoryl
chloride in dimethylformamide at 60 °C for 3 h gave the 3-dimeth-
ylaminomethylene derivative 7 in 94% yield. Japp-Klingemann
reaction of 7 with phenyldiazonium chloride16 in acetic acid solu-
tion (0 °C, 3 h) resulted in phenylhydrazone derivative 8 in 96%
yield. Compound 8 exhibits solvent dependent E–Z geometric
isomerism, as indicated by the NMR spectra. In DMSO-d6 the steri-
cally more favoured E form is dominant, due to an intermolecular
hydrogen bond between the amino group and the solvent mole-
cules. In DMSO-d6 the E–Z ratio is 55:45 at rt.17 These facts indicate
a low activation energy for isomerization of the exocyclic C(3)@N
double bond.18
Fischer indolization of compound 8 in polyphosphoric acid gave
8-norrutaecarpine 1a. The crude product was purified by flash
chromatography19 on silica gel to give 1a in good yield. The result-
ing compound, 7,12-dihydroindolo[20,30:3,4]pyrrolo[2,1-b]quinaz-
olin-5-one 1a, which can also be named as 8-norrutaecarpine or
14-norluotonin A constitutes a new pentacyclic ring system, which
contains common structural features of the two bioactive natural
alkaloids.
An alternative synthetic approach was elaborated for the prep-
aration of the pentacyclic ring system starting from anthranyl-
amide 10 (Scheme 2). Condensation of 10 with indole-2-
carboxylic acid 9 using DCCI in tetrahydrofuran solution and sub-
sequent base-catalyzed cyclocondensation provided the indolyl-
quinazolone derivative 12. The same product 12 was also
available by reaction of 2-bromoethylquinazolone 13 with 3 equiv
of phenylhydrazine and indolization of the obtained phenylhydraz-
one 14 in polyphosphoric acid at 180 °C. Vilsmeier–Haack formyla-
Acknowledgement
This work was supported by the Hungarian Scientific Research
Fund (OTKA T048554, OTKA K73804).
References and notes
1. Yang, L.-M.; Chen, C. F.; Lee, K.-H. Bioorg. Med. Chem. Lett. 1995, 5, 465.
2. Dallavalle, S.; Merlini, L.; Beretta, G. L.; Tinelli, S.; Zunino, F. Bioorg. Med. Chem.
Lett. 2004, 14, 5757.
3. Lee, S. H.; Son, J.-K.; Jeong, B. S.; Jeong, T.-C. ; Chang, H. W.; Lee, E.-S.; Jahng, Y.
Molecules 2008, 13, 272.
4. Tang, W.; Eisenbrand, G. In Chinese drugs Drugs of plant originPlant Origin; Tang,
W., Eisenbrand, G., Eds.; Springer: Berlin, 1992; pp 509–514.
5. Li, M.-T.; Huang, H.-I. Yao Hsueh Hsuesh Pao 1966, 13, 265; Chem. Abstr. 1966,
65, 3922c.
6. Hibino, S.; Choshi, T. Nat. Prod. Rep. 2001, 18, 66.
7. Deng, P.-Y.; Ye, F.; Cai, W.-J.; Tan, G.-S.; Hu, C.-P.; Deng, H.-W.; Li, Y.-J. J.
Hypertens. 2004, 22, 1819.
8. Selected articles: (a) Bergman, J.; Bergman, S. Heterocycles 1981, 16, 2347; (b)
Mohanta, P. K.; Kim, K. Tetrahedron Lett. 2002, 43, 3993; (c) Lee, E. S.; Park, J. G.;
Jahng, Y. Tetrahedron Lett. 2003, 44, 1883; (d) Mhaske, S. B.; Argade, N. P.
Tetrahedron 2004, 60, 3417; (e) Hamid, A.; Elomri, A.; Da¨ıch, A. Tetrahedron Lett.
2006, 47, 1777; (f) Lee, C.-S. ; Liu, C.-K. ; Chiang, Y.-L. ; Cheng, Y.-Y. Tetrahedron
Lett. 2008, 49, 481 and references cited therein.
9. (a) Kökösi, J.; Hermecz, I.; Szász, G.; Mészáros, Z. Tetrahedron Lett. 1981, 22,
4861; (b) Kökösi, J.; Szász, G.; Hermecz, I. Tetrahedron Lett. 1992, 33, 2995; (c)
Kökösi, J.; Hermecz, I.; Podányi, B.; Szász, G.; Mészáros, Z. J. Heterocycl. Chem.
1985, 22, 1373; (d) Hermecz, I.; Kökösi, J.; Horváth, Á.; Podányi, B.; Vasvári-
Debreczy, L.; Szász, G.; Mészáros, Z. J. Heterocycl. Chem. 1987, 24, 1045; (e)
Hermecz, I.; Kökösi, J.; Vasvári-Debreczy, L.; Horváth, Á.; Podányi, B.; Szász, G.;
Mészáros, Z. F. E. C. S. In Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod., [Proc],
3rd 1985 (Pub. 1987) 5, p 332.; . Chem. Abstr. 1989, 110, 231939; (f) Hermecz, I.;
Ko
¨
ko
¨
si, J.; Poda
nyi, B.; Liko
J.; Rotter, R.; Hermecz, I. Tetrahedron 2000, 56, 7987.
10. Ma, Z.-Z. ; Hano, Y.; Nomura, T.; Chen, Y.-J. Phytochemistry 2000, 53, 1075.
´
nyi, B.; Sza
´
sz, G. Heterocycles 1994, 37, 903; (g) Hermecz, I.;
´
Kokosi, J.; Poda
¨
´
´
, Zs. Tetrahedron 1996, 52, 7789; (h) Kiss, A.; Kokosi,
¨
¨
¨
tion of 12 using
a slight excess of phosphoryl chloride in
dimethylformamide under mild conditions (0 °C, 24 h) provided
the 3-formylindole derivative 15 in almost quantitative yield.
The prepared compound 15 is identical with bouchardatine, the
recently isolated natural alkaloid, from the aerial parts of Bou-
chardatia neurococca (Rutaceae).20 This procedure is also the first
total synthesis of the indolylquinazolone alkaloid 15.21 Conversion
of the tetracyclic compound 15 into the pentacyclic system was
performed using an analogous literature method to that applied
in the synthesis of luotonin.22 Reduction of the formyl group in
15 with sodium borohydride in methanol and acid-catalyzed ring
closure of the obtained 3-hydroxymethyl indole derivative 17 with
30% sulfuric acid provided 8-norrutaecarpine 1a. Similarly, acid-
catalyzed ring closure of 15 led to 7-hydroxy-8-norrutaecarpine
1b.
Preliminary apoptotic studies were performed as follows: To
test the effects of 8-norrutaecarpine 1a, bouchardatine 15 and
rutaecarpine 2, HeLa cells were incubated with 10ꢁ6 mol/l of the
compounds for 72 h and nucleosomal DNA fragmentation, a mar-
ker of apoptotic cell death, was analyzed by flow cytometry. The
percent of apoptotic cells corresponding to the sub-G1 phase was
found to be 38.6 3.3 with bouchardatine 15, 24.1 3.8 with
8-norrutaecarpine 1a and 14.5 2.8 with rutaecarpine 2. Cells
were incubated with etoposide as a positive control, and 15.4
1.9 percent were observed to undergo apoptosis.
11. Cagir, A.; Jones, S. H.; Gao, R.; Eisenhauer, B. M.; Hecht, S. M. J. Am. Chem. Soc.
2003, 125, 13628.
12. Nacro, K.; Zha, C.; Guzzo, P. R.; Herr, R. J.; Peace, D.; Friedrich, T. D. Bioorg. Med.
Chem. 2007, 15, 4237.
13. Selected articles: (a) Ma, Z.-Z. ; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles
1999, 51, 1593; (b) Kelly, T. R.; Chamberland, S.; Silva, R. A. Tetrahedron Lett.
1999, 40, 2723; (c) Osborne, D.; Stevenson, P. J. Tetrahedron Lett. 2002, 43,
5469; (d) Dallavalle, S.; Merlini, L. Tetrahedron Lett. 2002, 43, 1835; (e)
Harayama, T.; Morikami, Y.; Shigeta, Y.; Abe, H.; Takeuchi, Y. Synlett 2003, 6,
847; (f) Twin, H.; Batey, R. A. Org. Lett. 2004, 6, 4913; (g) Cheng, K.; Rahier, N. J.;
Eisenhauer, B. M.; Gao, R.; Thomas, S. J.; Hecht, S. M. J. Am. Chem. Soc. 2005, 127,
838; (h) Xiao, X.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49,
1408; (i) Zhou, H.-B. ; Liu, G.-S. ; Yao, Z.-J. J. Org. Chem. 2007, 72, 6270; (j)
Bowman, W. R.; Elsegood, M. R.; Stein, T.; Weaver, G. W. Org. Biomol. Chem.
2007, 5, 103; (k) Mason, J. J.; Bergman, J. Org. Biomol. Chem. 2007, 5, 2486. and
references cited therein.
14. Chatterjee, A.; Ganguly, M. Phytochemistry 1968, 7, 307–311.
15. Molina, P.; Tárraga, A.; González-Tejero, A. Synthesis 2000, 1523.
16. Vogel, A. I. Practical Organic Chemistry; Longman Group Ltd: Essex, 1978. pp
687–720.
17. 1H NMR (600 MHz, DMSO-d6) d 3.00 (t, J = 7.21 Hz, 2H), 4.19 (t, J = 7.21 Hz, 2H),
6.90 (t, J = 6.63 Hz, 1H), 7.31 (m, 2H, overlap), 7.32 (m, 2H, overlap), 7.48 (t,
J = 7.80 Hz, 1H), 7.75 (d, J = 7.82 Hz, 1H), 7.80 (td, J = 1.24, 7.81 Hz, 1H), 8.14, (d,
J = 7.82 Hz, 1H), (d NH 10.03 and 11.96), E:Z ratio: 55:45.
18. Tóth, G.; Szöllo}sy, Á.; Almásy, A.; Podányi, B.; Hermecz, I.; Breining, T.;
Mészáros, Z. Org. Magn. Reson. 1983, 21, 687–693.
19. Preparation of 8-norrutaecarpine 1a: 3.3 mmol of
8 was added to
polyphosphoric acid (10.0 g, Fluka) at 180 °C and the reaction mixture was
stirred for 30 min. Cold water (100 ml) was added and the aqueous mixture
was stirred for 1 h. The precipitated crystals were filtered off, treated with 10%
NaOH solution and water. The resulting dried dark-green crude solid was
chromatographed on Kieselgel 60 (Merck) (230–400 mesh ASTM) solid phase,
eluting with CH2Cl2/EtOAc (4:1). The middle fractions gave a pale yellow solid
In conclusion, we have synthesized a new pentacyclic indo-
lopyrroloquinazoline ring system. Facile alternative preparative
procedures have been carried out from readily available starting
materials. In all these methods, the synthetic strategy involved
construction of the BC ring and/or to build the connection between
the B and D rings from substituted quinazoline derivatives.
Unfortunately, the low solubility of hybrid compounds 1 is a
limitation preventing correct estimation of their biological activity.
The preparation of various substituted derivatives that may exhibit
in 67% yield, mp: 305 °C. UV: in EtOH kmax (loge): 349.2 (4.444), 333.2 (4.538),
319.6 (4.490), 239.2 (4.442), 226 (4.453), 202.8 (4.481) nm. 1H NMR (400 MHz,
DMSO-d6) d 5.12 (s, 2H), 7.19 (ddd, J = 0.80, 7.13, 7.92 Hz, 1H), 7.34 (ddd,
J = 1.07, 7.03, 8.17 Hz, 1H), 7.52 (td, J = 0.72, 8.26 Hz, 2H), 7.74 (d, J = 7.64 Hz,
1H), 7.80 (d, J = 7.99 Hz, 1H), 7.85 (ddd, J = 1.55, 7.15, 8.28 Hz, 1H), 8.24 (dd,
J = 1.31, 7.80 Hz, 1H), 12.41 (s, 1H, NH). 13C NMR (150 MHz, DMSO-d6) d 45.7,
113.3, 119.7, 120.4, 120.5, 121.5, 124.9, 125.0, 125.8, 126.0, 126.7, 133.7, 134.2,
142.4, 149.0, 149.1, 159.6. HRMS (ESI): calcd for (M+H)+ (C17H12N3O) requires
m/z 274.2967, found 274.2959.