Griffin and A. D. Campbell, J. Am. Chem.Soc., 2006, 128, 2514; (g) T. J.
Donohoe, C. J. R. Bataille, W. Gattrell, J. Kloesges and E. Rossignol,
Org. Lett., 2007, 9, 1725; (h) K. L. Curtis, E. L. Evinson, S. Handa and
K. Singh, Org. Biomol. Chem., 2007, 5, 3544.
5 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev.,
1994, 94, 2483.
6 (a) B. Tao, G. Schlingloff and K. B. Sharpless, Tetrahedron Lett., 1988,
39, 2507; (b) H. Park, B. Cao and M. M. Joullie, J. Org. Chem., 2001,
66, 7223; (c) I. H. Kim and K. L. Kirk, Tetrahedron Lett., 2001, 42,
8401; (d) A. J. Morgan, C. E. Masse and J. S. Panek, Org. Lett., 1999,
1, 1949.
Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211; (d) A. E.
Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066; (e) A. E. Reed
and F. Weinhold, J. Chem. Phys., 1985, 83, 1736.
29 For a detailed discussion on electronic effects and the mechanism of
the Sharpless AA reaction see reference 3f and 23.
30 P. V. Ramachandran, J. S. Chandra and M. V. R. Reddy, J. Org. Chem.,
2002, 67, 7547.
31 A. K. Chatterjee, T.-L. Choi, D. P. Sanders and R. H. Grubbs, J. Am.
Chem. Soc., 2003, 125, 11360.
32 G. Li, H. H. Angert and K. B. Sharpless, Angew. Chem., Int. Ed. Engl.,
1996, 35, 2813.
7 (a) The reversal of regioselectivity associated with styrenes and related
substrates is less general: M. Bruncko, G. Schlingloff and K. B.
Sharpless, Angew. Chem., Int. Ed. Engl., 1997, 36, 1483; (b) K. L. Reddy
and K. B. Sharpless, J. Am. Chem. Soc., 1998, 120, 1207; (c) M. H.
Haukaas and G. A. O’Doherty, Org. Lett., 2001, 3, 3899.
8 (a) A small reduction in the magnitude of regioselectivity has been
observed on changing from (DHQ)2PHAL to (DHQD)2PHAL ligands
in the aminohydroxylation of styrenes: P. J. O’Brien, S. A. Osborne
and D. D. Parker, J. Chem. Soc., Perkin Trans. 1, 1998, 2519; (b) P. J.
O’Brien, S. A. Osborne and D. D. Parker, Tetrahedron Lett., 1998, 39,
4099.
33 N. S. Barta, D. R. Sidler, K. B. Somerville, S. A. Weissman, R. D.
Larsen and P. J. Reider, Org. Lett., 2000, 2, 2821.
34 W. Amberg, Y. L. Bennani, R. K. Chadha, G. A. Crispino, W. D. Davis,
J. Hartung, K.-S. Jeong, Y. Ogino, T. Shibata and K. B. Sharpless,
J. Org. Chem., 1993, 58, 844.
35 The imidotrioxoosmium unit was constructed at the University of
Sydney workshop.
36 In this binding mode substrate adopts an s-cis conformation about the
allylic C–C single bond. This conformation (C2–C3–C4–C5 dihedral
angle 0◦) is 0.64 kcal mol−1 (MM2/Chem 3D Pro) higher in energy than
the corresponding extended conformation (C2–C3–C4–C5 dihedral
angle 121◦). A similar conformation has been proposed for the
Sharpless AD reaction of homoallyl aryl ethers. E. J. Corey, A.
Guzman-Perez and M. C. Noe, J. Am. Chem. Soc., 1995, 117, 10805
and references cited therein.
9 H. Han, C.-W. Cho and K. D. Janda, Chem.–Eur. J., 1999, 5, 1565.
10 (a) C.-Y. Chuang, V. C. Vassar, Z. Ma, R. Geney and I. Ojima, Chirality,
2002, 14, 151; (b) C.-Y. Chuang, V. C. Vassar, Z. Ma, R. Geney and I.
Ojima, Chirality, 2002, 14, 757(erratum).
11 R. M. Davey, M. A. Brimble and M. D. McLeod, Tetrahedron Lett.,
2000, 41, 5141.
12 Different conformations associated with the distinct geometries 4, 5 and
6 were generated manually followed by full B3LYP/6–31G* geometry
optimisation and frequency calculation to identify the corresponding
equilibrium geometries.
37 We have been unable to grow crystals of the AQN ligands suitable for
X-ray crystallography.
38 (a) A key torsion in the (DHDQ)2PHAL ligands is the alkyl aryl ether
(
DHQDCH–O–C–NPHAL) that orients the DHQD alkaloid units relative to
the PHAL spacer. In the (DHDQ)2PHAL crystal structure this torsion
approaches co-planarity (average 7.1◦, ref. 34). Evidence for the same
conformational preference for AQN derived ligands (DHQDCH–O–C–
CHAQN ) can be found by searching the Cambridge Structural Database
for related alkyl aryl ethers based on the anthraquinone motif. Of the
eleven structurally analogous torsions contained in six CSD structures;
nine adopted a near coplanar torsions (average 5.99◦) and two adopted
out of plane torsions (76.0 and 98.9◦); G. B. Caygill, D. S. Larsen
and S. Brooker, J. Org. Chem., 2001, 66, 7427; (b) R. C. Cambie,
R. M. Lorimer, C. E. F. Rickard and P. S. Rutledge, Acta Crystallogr.,
Sect. C, 1999, 55, 436; (c) U. Siriwardane, S. P. Khanapure and E. R.
Biehl, Acta Crystallogr., Sect. C, 1990, 46, 924; (d) G. A. Sulikowski,
E. Turos, S. J. Danishefsky and G. M. Shulte, J. Am. Chem. Soc.,
1991, 113, 1373; (e) S. Norvez, F.-G. Tournilhac, P. Bassoul and P.
Herson, Chem. Mater., 2001, 13, 2552; (f) H. Chikashita, J. A. Porco,
Jr., T. J. Stout, J. Clardy and S. L. Schreiber, J. Org. Chem., 1991, 56,
1692.
13 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
14 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
15 D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, Theor.
Chim. Acta, 1990, 77, 123.
16 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M.
Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN 98 (Revision
A.7), Gaussian, Inc., Pittsburgh, PA, 1998.
17 M. Harding, J. A. Bodkin, C. A. Hutton and M. D. McLeod,
SYNLETT, 2005, 2829.
18 MOPAC input files (6–31G*) for structures 4, 5 and 6 are reported in
the electronic supplementary information†.
19 The observation of this bent geometry is noteworthy, as a near linear
geometry of related imidoosmium carbamates has been advanced to
rationalize the empirically observed diastereoselectivity in the tethered
aminohydroxylation reaction (ref. 4c). This model has recently been
updated with the suggestion tethered aminohydroxylation occurs in
the mechanistically distinct secondary cycle (ref. 4g).
39 The absolute configuration of both regioisomers 11e and ent-10e
was confirmed by the formation of R- and S- Mosher’s esters and
application of the modified Mosher’s method: I. Ohtani, T. Kusumi,
Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991, 113,
4092.
40 The para-nitrophenyl ether also leads to improved regioselectivity in the
AA reaction of related mono-substituted alkene substrates (ref. 16).
41 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525.
42 E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem., Int.
Ed., 2003, 42, 1210.
43 J. B. Jennings, B. M. Farrel and J. M. Malone, Acc. Chem. Res., 2001,
34, 885.
20 C. J. Cramer and D. G. Truhlar, Chem. Rev., 1999, 99, 2161.
21 J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027.
22 W. P. Griffith, N. T. McManus, A. C. Skapski and A. D. White, Inorg.
Chim. Acta, 1985, 105, L11.
23 For a review of imidoosmium compounds in organic synthesis see: K.
Muniz, Chem. Soc. Rev., 2004, 33, 166.
24 A. J. Bailey, M. G. Bhowon, W. P. Griffithe, A. G. F. Shoair, A. P. White
and D. J. Williams, J. Chem. Soc., Dalton Trans., 1997, 3245.
25 E. J. Corey, M. C. Noe and S. Sarshar, J. Am. Chem. Soc., 1993, 115,
3828.
26 J. S. Svendsen, I. Marko, E. N. Jacobsen, C. Pulla Rao, S. Bott and
K. B. Sharpless, J. Org. Chem., 1989, 54, 2263.
44 (a) F. J. Carver, C. A. Hunter, D. J. Livingstone, J. F. McCabe and E. M.
Seward, Chem.–Eur. J., 2002, 8, 2847; (b) F. J. Carver, C. A. Hunter,
P. S. Jones, D. J. Livingstone, J. F. McCabe, E. M. Seward, P. Tiger and
S. E. Spey, Chem.–Eur. J., 2001, 7, 4854.
45 (a) S. Paliwal, S. Geib and C. S. Wilcox, J. Am. Chem. Soc., 1994, 116,
4497; but see also; (b) E. Kim, S. Paliwal and C. S. Wilcox, J. Am. Chem.
Soc., 1998, 120, 11192; (c) K. Nakamura and K. N. Houk, Org. Lett.,
1999, 1, 2049.
46 The planar conformation (C2ꢀ–C1ꢀ–O–C5 constrained dihedral angle
0◦, local maximum) of the aryl ether in 9f is 4.95 kcal mol−1
higher in energy (MM2/Chem3D Pro) than the co◦rresponding twisted
conformation (C2ꢀ–C1ꢀ–O–C5 dihedral angle 76 , local minimum).
The MOPAC input file of structure 9f is reported in the electronic
supplementary information†.
27 W. P. Griffith, A. C. Skapski, K. A. Woode and M. J. Wright, Inorg.
Chim. Acta, 1978, 31, L413.
28 (a) J. E. Carpenter and F. Weinhold, J. Mol. Struct., 1988, 169, 41;
(b) J. E. Carpenter, PhD thesis, Unversity of Wisconsin, 1987; (c) J. P.
47 The planar conformation (C2ꢀ–C1ꢀ–O–C5 dihedral angle 0◦, local
minimum) of the aryl ether in 9e is 1.06 kcal mol−1 lower in energy
2552 | Org. Biomol. Chem., 2008, 6, 2544–2553
This journal is
The Royal Society of Chemistry 2008
©