Molecular Pharmaceutics
ARTICLE
’ REFERENCES
(23) Lee, K. H.; Jung, K. H.; Song, S. H.; Kim, D. H.; Lee, B. C.;
Sung, H. J.; Han, Y. M.; Choe, Y. S.; Chi, D. Y.; Kim, B. T. Radiolabeled
RGD uptake and RV integrin expression is enhanced in ischemic murine
hindlimbs. J. Nucl. Med. 2005, 46, 472–478.
(24) Han, H. D.; Lee, A.; Hwang, T.; Song, C. K.; Seong, H.; Hyun,
J.; Shin, B. C. Enhanced circulation time and antitumor activity of
doxorubicin by comb-like polymer-incorporated liposomes. J. Controlled
Release 2007, 120, 161–168.
(25) Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y. Transmembrane
ammonium sulfate gradient in liposomes produce efficient and stable
entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1993,
1151, 201–215.
(26) Shiraga, E.; Barichello, J. M.; Ishida, T.; Kiwada, H. A metro-
nomic schedule of cyclophosphamide combined with PEGylated lipo-
somal doxorubicin has a highly antitumor effect in an experimental
pulmonary metastatic mouse model. Int. J. Pharm. 2008, 353, 65–73.
(27) Yang, S. R.; Lee, H. J.; Kim, J.-D. Histidine-conjugated poly-
(amino acid) derivatives for the novel endosomolytic delivery carrier of
doxorubicin. J. Controlled Release 2006, 114, 60–68.
(28) Wang, J.-C.; Liu, X.-Y.; Lu, W.-L.; Chang, A.; Zhang, Q.; Goh,
B.-C.; Lee, H.-S. Pharmacokinetics of intravenously administered stealth
liposomal doxorubicin modulated with verapamil in rats. Eur. J. Pharm.
Biopharm. 2006, 62, 44–51.
(29) Missirlis, D.; Kawamura, R.; Tirelli, N.; Hubbell, J. A. Doxor-
ubicin encapsulation and diffusional release from stable, polymeric,
hydrogel nanoparticles. Eur. J. Pharm. Sci. 2006, 29, 120–129.
(30) Hunt, C. A.; MacGregor, R. D.; Siegel, R. A. Engineering
Targeted In Vivo Drug Delivery I. The Physiological and Physicochem-
ical Principles Governing Opportunities and Limitations. Pharm. Res.
1986, 3, 333–344.
(31) Drummond, D. C.; Meyer, O.; Hong, K.; Kirpotin, D. B.;
Papahadjopoulos, D. Optimizing liposomes for delivery of chemother-
apeutic agents to solid tumors. Pharmcol. Rev. 1999, 51, 691–743.
(32) Soloman, R.; Gabizon, A. Clinical pharmacology of liposomal
anthracyclines: focus on pegylated liposomal Doxorubicin. Clin. Lym-
phoma Myeloma 2008, 8, 21–32.
(1) Fornari, F. A.; Randolph, J. K.; Yalowich, J. C.; Ritke, M. K.;
Gewirtz, D. A. Interference by doxorubicin with DNA unwinding in
MCF-7 breast tumor cells. Mol. Pharmacol. 1994, 45, 649–656.
(2) Gerwirtz, D. A. A critical evaluation of the mechanisms of action
proposed for the antitumor effects of the anthracycline antibiotics
adriamycin and daunorubicin. Biochem. Pharmacol. 2001, 57, 727–741.
information/DR202209.
(4) Kwok, J. C.; Richardson, D. R. Examination of the mechanism(s)
involved in doxorubicin-mediated iron accumulation in ferritin: studies
using metabolic inhibitors, protein synthesis inhibitors and lysosomo-
tropic agents. Mol. Pharmacol. 2004, 65, 181–195.
(5) Lothstein, L.; Isreal, M.; Sweatman, T. W. Anthracycline drug
targeting: cytoplasmic versus nuclear—a fork in the road. Drug Resist.
Updates 2001, 4 (3), 169–177.
(6) Swain, S. M.; Vici, P. The current and future role of dexrazoxane
as a cardioprotectant in anthracycline treatment: expert panel review.
J. Cancer Res. Clin. Oncol. 2004, 130, 1–7.
(7) Ogawara, K.; Un, K.; Minato, K.; Tanaka, K.; Higaki, K.; Kimura,
T. Determinants for in vivo anti-tumor effects of PEG liposomal
doxorubicin: Importance of vascular permeability within tumor. Int. J.
Pharm. 2008, 359, 234–240.
(8) Yang, T.; Choi, M. K.; Cui, F.; Kim, J. S.; Chung, S. J.; Shim,
C. K.; Kim, D. D. Preparation and evaluation of paclitaxel-loaded
PEGylated immunoliposome. J. Controlled Release 2007, 120, 169–
177.
(9) Pan, H.; Han, L.; Chen, W.; Yao, M.; Lu, W. Targeting to tumor
necrotic regions with biotinylated antibody and streptavidin modified
liposomes. J. Controlled Release 2008, 125, 228–235.
(10) Saul, J. M.; Annapragada, A.; Natarajan, J. V.; Bellamkonda,
R. V. Controlled targeting of liposomal doxorubicin via the folate
receptor in vitro. J. Controlled Release 2003, 92, 49–67.
(11) Yeh, C. H.; Peng, H. C.; Huang, T. F. Accutin, a new disintegrin,
inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbe-
ta3 antagonist and inducing apoptosis. Blood 1998, 92, 268–3276.
(12) Schmitmeier, S.; Markland, F. S.; Chen, T. C. Anti-invasive
effect of contortrostatin, a snake venom disintegrin, and TNF-alpha on
malignantglioma cells. Anticancer Res. 2000, 20, 4227–4233.
(13) Humphries, M. J. Integrin structure. Biochem. Soc. Trans. 2004,
28, 311–339.
(14) Hynes, R. O. Integrins: versatility, modulation, and signalingin
cell adhesion. Cell 1992, 69, 11–25.
(15) Tucker, G. C. Inhibitors of intergrins. Curr. Opin. Pharmacol.
2002, 2, 394–402.
(16) Alford, D.; Pitha-Rowe, P.; Taylor-Papadimitriou, J. Adlhesion
molecules in breast cancer: role of R2β1 integrin. Biochem. Soc. Symp.
1998, 63, 245–259.
(17) Johnson, J. P. Cell adhesion molecules in the development and
progression of malignant melanoma. Cancer Metastasis Rev. 1999,
18, 345–357.
(18) Max, R.; Gerritsen, R. R.; Nooijen, P. T. Immunohistochemical
analysis of integrin RVβ3 expression on tumor-associated vessels of
human carcinomas. Int. J. Cancer 1997, 71, 320–324.
(19) Str€omblad, S.; Cheresh, D. A. Integrins, angiogenesis and
vascular cell survival. Chem. Biol. 1996, 3, 881–885.
(20) Xiong, X.; Huang, Y.; Lu, W.; Zhang, X.; Zhang, H.; Zhang, Q.
Preparation of doxorubicin in loaded stealth liposomes modified with
RGD mimetic and cellular association in vitro. Acta Pharmacol. Sin.
2005, 40, 1085–1090.
(21) Jain, S.; Mishra, V.; Singh, P.; Dubey, P. K.; Saraf, D. K.; Vyas,
S. P. RGD-anchored magnetic liposomes for monocytes/neutrophils-
mediated brain targeting. Int. J. Pharm. 2003, 261, 43–55.
(22) Rahman, S.; Lu, X.; Kakkar, V. V.; Authi, K. S. The integrin
R
IIbβ3 contains distinct and interacting binding sites for snake-venom
R-G-D (Arg-Gly-Asp) proteins. Biochem. J. 1995, 312, 223–232.
1232
dx.doi.org/10.1021/mp200039s |Mol. Pharmaceutics 2011, 8, 1224–1232