Q. Liu et al. / Tetrahedron Letters 42 (2001) 1445–1447
1447
Acknowledgements
86%). 1H NMR indicates >95% purity. If desired, 1 can be
further purified by flash chromatography (20% hexane/
dichloromethane). 1H NMR (400 MHz, CDCl3): l 8.22 (d,
J=9.2 Hz, 2H), 7.37–7.29 (m, 7H), 5.46 (t, J=6 Hz, 1H),
4.45 (d, J=6 Hz, 2H); IR (KBr pellet) 3317, 1708, 1525,
This work was supported by grants from the National
Institutes of Health (AI 47673) and the Universitywide
AIDS Research Program (D00-SD-017).
1348, 1253, 1211, 1036, 1011 cm−1
.
11. General procedure for the synthesis of N-benzyl ureas: In
a typical reaction, 4-nitrophenyl-N-benzylcarbamate 1 (1
mmol) is added to a solution of an amine (1 mmol) and
triethylamine (1 mmol) in dichloromethane (8 ml). The
mixture is stirred at room temperature until 1 is consumed
(as evidenced by TLC). The reaction mixture is then
diluted with dichloromethane (100 ml) and washed with
dilute aq. NaOH, water and brine. After drying (Na2SO4)
and filtering, the solvent is removed under reduced pres-
sure. 1H NMR indicates >95% purity. If desired, the crude
product can be purified by recrystallization or flash chro-
matography. General procedure for hydrogenolysis to a
monosubstituted urea: In a typical reaction, the N-benzy-
lurea (0.5 mmol) is dissolved in acetic acid (6 ml). An equal
weight of Pd black is added and the reaction vessel is
connected to a Parr medium pressure hydrogenation
apparatus (30–50 psi). After completion of the reaction,
the catalyst is filtered and washed with methanol. The
solvent is removed under reduced pressure. 1H NMR
indicates >90% purity. If desired, the crude product can be
purified by recrystallization or flash chromatography.
References
1. See, for example: (a) Tsopmo, A.; Ngnokam, D.; Ngamga,
D.; Ayafor, J. F.; Sterner, O. J. Nat. Prod. 1999, 62,
1435–1436; (b) Funabashi, Y.; Tsubotani, S.; Koyama, K.;
Katayama, N.; Harada, S. Tetrahedron 1993, 49, 13–28
2. (a) Getman, D. P.; Decrescenzo, G. A.; Heintz, R. M.;
Reed, K. L.; Talley, J. J.; Bryant, M. L.; Clare, M.;
Houseman, K. A.; Marr, J. J.; Mueller, R. A.; Vazquez,
M. L.; Shieh, H. S.; Stallings, W. C.; Stegeman, R. A. J.
Med. Chem. 1993, 36, 288–291; (b) Vyshnyakova, T. P.;
Golubeva, I. A.; Glebova, E. V. Russ. Chem. Rev. (Engl.
Transl.) 1985, 54, 249–261.
3. For selected examples, see: (a) Smith, P. J.; Reddington,
M. V.; Wilcox, C. S. Tetrahedron Lett. 1992, 33, 6085–
6088; (b) Zafar, A.; Geib, S. J.; Hamuro, Y.; Hamilton, A.
D. New. J. Chem. 1998, 137–141; (c) Sijbesma, R. P.;
Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Ky
Hirschberg, J. H. K.; Lange, R. F. M.; Lowe, J. K. L.;
Meijer, E. W. Science 1997, 278, 1601–1604.
4. See, for example: (a) Wang, H.; Tor, Y. J. Am. Chem. Soc.
1997, 119, 8734–8735; (b) Michael, K.; Tor, Y. Chem. Eur.
J. 1998, 4, 2091–2098; (c) Michael, K.; Wang, H.; Tor, Y.
Bioorg. Med. Chem., 1999, 7, 1361–1371; (d) Kirk, S. R.;
Luedtke, N. W.; Tor, Y. J. Am. Chem. Soc. 2000, 122,
980–981; (e) Luedtke, N. W.; Baker, T. J.; Goodman, M.
Tor, Y. J. Am. Chem. Soc. 2000, 122, 12035–12036.
5. Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2,
140–148.
6. For a recent example of metal-catalyzed carbonylation of
amines and references therein, see: (a) McCusker, J. E.;
Main, A. D.; Johnson, K. S.; Grasso, C. A.; McElwee-
White, L. J. Org. Chem. 2000, 65, 5216–5222.
1
12. Spectral data for 2: H NMR (400 MHz, DMSO-d6): l
7.31–7.20 (m, 5H), 6.21 (t, J=5.6 Hz, 1H), 5.92 (t, J=5.6
Hz, 1H), 4.18 (d, J=5.6 Hz, 2H), 2.84 (t, J=6 Hz, 2H),
1.63 (m, 4H), 1.20 (m, 1H), 1.14 (m, 4H), 0.84 (m, 2H). IR
(KBr pellet) 3329, 1627, 1591, 1581 cm−1
.
13. Spectral data for 3: 1H NMR (400 MHz, DMSO-d6): l 5.92
(t, J=6 Hz, 1H), 5.32 (s, 2H), 2.77 (t, J=6 Hz, 2H), 1.62
(m, 4H), 1.27 (m, 1H), 1.13 (m, 4H), 0.82 (m, 2H). IR (KBr
pellet): 3392, 3213, 1654, 1609, 1551 cm−1
.
14. A solution of kanamycin A (100 mg, 0.21 mmol) and
triethylamine (84 mg, 0.83 mmol) in 1,4-dioxane/water
(3:1, 2.5 ml) is treated with 1 (225 mg, 0.83 mmol). The
reaction mixture is stirred at rt until 1 is consumed (ca. 3
h). The reaction mixture is then evaporated to dryness and
the residue is washed with 1 mM NaOH and water and
dried under reduced pressure to give a white powder (98
7. Knapp, S.; Hale, J.; Bastos, M.; Molina, A.; Cheng, K. J.
Org. Chem. 1992, 57, 6239–6256. For a recent application
of the 4-methoxybenzyl isocyanate, see: Jefferson, E. A.;
Swayze, E. E. Tetrahedron Lett. 1999, 40, 7757–7760.
8. Trimethylsilylisocyanate is another potential but moisture-
sensitive reagent, see: Parker, K. A.; Gibbos, E. G.
Tetrahedron Lett. 1975, 981–984. Potassium cyanate can
directly convert simple amines into monosubstituted ureas
in water, see: Kurzer, F. Org. Syn. 1963, coll. vol. IV,
49–51.
1
mg, 93%). H NMR indicates >95% purity. The product
can be further purified by flash chromatography (5%
methanol/dichloromethane). Hydrogenolysis is performed
as described above with one weight-equivalent of Pd black
per benzyl group. A higher H2 pressure (55 psi) and longer
reaction time (30 h) are employed.
15. Spectral data for kanamycin A derivative 5: MALDI MS
calcd for C22H40N8NaO15 [M−Na]+ 679.2505. Found:
1
679.2495. H NMR (400 MHz, DMSO-d6): 6.20 (d, J=6
9. Hydrolysis of the isocyanate to benzylamine, followed by
condensation of the latter with excess isocyanate gives
N,N%-dibenzylurea as the major product.
Hz, 1H), 6.12 (d, J=6.4 Hz, 1H), 6.03 (t, J=5.6 Hz, 1H),
5.84–5.82 (m, 3H), 5.72–5.65 (m, 5H), 5.58–5.55 (m, 3H),
5.41 (d, J=5.2 Hz, 1H), 5.12–5.07 (m, 3H), 5.23 (d, J=4.4
Hz, 1H), 4.95 (d, J=3.6 Hz, 1H), 4.47 (t, J=6 Hz, 1H),
3.82 (m, 1H), 3.67–3.17 (m, 15H), 2.99 (m, 1H), 2.07 (m,
1H), 1.31 (q, 1H).
10. Benzylamine (1.59 g, 14.9 mmol) is dissolved in a mixture
of dry dichloromethane (80 ml) and pyridine (1.17 g, 14.9
mmol). 4-Nitrophenylchloroformate (2.98 g, 14.9 mmol) is
added and the solution is refluxed for 6 h. The reaction
mixture is then diluted with dichloromethane (200 ml) and
washed with 1 M sodium bicarbonate solution, water and
brine. The solvent is dried (Na2SO4) and removed under
reduced pressure to yield the colorless product (3.35 g,
16. The desired fully derivatized kanamycin A is obtained in
less than 18% yield based on NMR analysis of the crude
mixture when 4 equivalents of benzylisocyanate are used.
17. Multiple products are formed, none of which correspond
to 5.