486
N. M. Kuz’menok et al.
LETTER
H
Ar
H+
Ar
+
O
O
HO
Ph
Ar
Ar
O
Ph
Ph
TsNHNH2
H+
Ph
H
H
- H+
N
+
N
N
..
N
O
HN
Ts
N
H
1
Ts
Ts
Ar
Ar
Ph
HO
Ar
Ar
Ph
HO
Ph
H
N
N
N
N
- H2O
N
HN
Ts
HO
Ph
N
N
B
A
Ts
Ts
Ts
2
3
Scheme 2
(KBr): nmax = 3504 (OH), 1600 (C=N), 1364, 1168 (S=O),
960 (HC=) cm–1. 1H NMR (400 MHz, CDCl3): d = 2.39 (3 H,
s, CH3), 3.23 (1 H, d, J = 17.6 Hz, CH2), 3.51 (1 H, d,
J = 17.6 Hz, CH2), 6.63 (1 ,H d, J = 16.4 Hz, CH=), 7.02 (1
H, d, J = 16.4 Hz, CH=), 7.23 (2 H, d, J = 8.3 Hz, C6H4),
7.29–7.50 (10 H, m, arom.), 7.69 (2 H, d, J = 8.3 Hz, C6H4).
MS: m/z (%) = 418 (5.4) [M+], 91 (100).
Formation of pyrazolines 2a–f proceeded through the ox-
irane ring-opening at the a-carbon, then probably through
the intramolecular rearrangement of azadiene intermedi-
ate (A). The azadiene A is further transformed through a
hydride [1,5] sigmatropic shift to 1,3-diketone monohy-
drazone (B, Scheme 2). Intramolecular cyclization leads
finally to 5-hydroxypyrazolines 2a–f.
Compound 2c: yield 83%, mp 98–100 °C (C6H6). 1H NMR
(400 MHz, CDCl3): d = 2.39 (3 H, s, CH3), 3.21 (1 H, d,
J = 17.6 Hz, CH2), 3.49 (1 H, d, J = 17.6 Hz, CH2), 6.55 (1
H, d, J = 16.4 Hz, CH=), 7.00 (1 H, d, J = 16.4 Hz, CH=),
7.22 (2 H, d, J = 8.3 Hz, C6H4), 7.25 (5 H, m, C6H5), 7.32–
It has been shown that 1,3-diketone hydrazones form
stable 5-hydroxy-2-pyrazolines only if an electron-with-
drawing group, i.e. acyl, is at the 1-position, or if a per-
fluoroalkyl group is present at the 5-position of the
pyrazoline ring.8
7.50 (4 H, m, C6H4), 7.68 (2 H, d, J = 8.3 Hz, C6H4). 13
C
NMR (125.77 MHz, CDCl3): d = 21.61 (CH3), 50.50 (CH2),
97.82 (C-OH), 121.91 (CH=), 125.02 (CH=), 125.05,
126.90, 127.96, 128.33, 128.59, 128.94, 129.38, 130.08,
135.15, 137.6, 142.8 (arom.),153.02 (C-3).
Compound 3a: yield 12%, mp 122–124 °C (EtOH). IR
(KBr): nmax = 1383, 1176 (S=O), 970 (HC=) cm–1. 1H NMR
(400 MHz, CDCl3): d = 2.37 (3 H, s, CH3), 6.53 (1 H, s, 4-
H), 7.08 (1 H, d, J = 16.6 Hz, CH=), 7.16 (1 H, d, J = 16.6
Hz, CH=), 7.20 (2 H, d, J = 8.2 Hz, arom.), 7.27–7.52 (10 H,
m, arom.), 7.56 (2 H, d, J = 8.2 Hz, C6H4).
Compound 4i: yield 79%, mp 190–192 °C (MeOH). IR
(KBr): nmax = 3385 (NH), 2928, 2856 (CH), 1344, 1160
(S=O) cm–1. 1H NMR (400 MHz, CDCl3): d = 1.20–2.25 (10
H, m, C6H11), 2.38 (3 H, s, CH3), 2.81 (1 H, m, C6H11), 3.17
(1 H, d, J = 18.0 Hz, CH2), 3.56 (1 H, d, J = 18.0 Hz, CH2),
6.60 (1 H, d, J = 16.4 Hz, CH=), 7.10 (1 H, d, J = 16.4 Hz,
CH=), 7.12–7.45 (14 H, m, arom.).
Synthesis of the series of stable 3-(2-arylvinyl)-5-hy-
droxy-5-phenyl-1-tosyl-2-pyrazolines 2a–f expands our
knowledge about structure-stability dependence of 5-hy-
droxysubstituted pyrazolines.
References
(1) Levai, A. Chem. Heterocycl. Compd. (Engl. Transl.) 1997,
33, 647.
(2) Zvonok, A. M.; Kuz’menok, N. M.; Stanishevsky, L. S.
Khim. Geterotsikl. Soedin. 1990, 5, 633.
(3) Kuz’menok, N. M.; Zvonok, A. M. Chem. Heterocycl.
Compd. (Engl. Transl.) 1996, 3, 324.
(4) (a) Lan, R.; Liu, Q.; Fan, P.; Lin, S.; Fernando, S. R.;
McCallion, D. S.; Pertwee, R.; Makriyannis, A. J. Med.
Chem. 1999, 42, 769. (b) Abadi, A. H.; Eissa, A. A. H.;
Hassan, G. S. Chem. Pharm. Bull. 2003, 51, 838. (c)Lange,
J. H. M.; Coolen, H. K. A. C.; Stuivenberg, H. H.; Dijksman,
J. A. R.; Herremans, A. H. J.; Ronken, E.; Keizer, H. G.;
Tipker, K.; McCreary, A. C.; Veerman, W.; Wals, H. C.;
Stork, B.; Verveer, P. C.; Hartog, A. P.; Jong, N. M. J.;
Adolfs, T. J. P.; Hoogendoorn, J.; Kruse, C. G. J. Med.
Chem. 2004, 47, 627.
(8) Zelenin, K. N.; Alekseyev, V. V.; Tygysheva, A. R.;
Yakimovitch, S. I. Tetrahedron 1995, 51, 11251.
(9) Singh, S. P.; Kumar, D.; Jones, B. G.; Threadgill, M. D.
J. Fluorine Chem. 1999, 94, 199.
(10) Zelenin, K. N.; Tugusheva, A. R.; Yakimovitch, S. I.;
Alekseyev, V. V.; Zerova, E. V. Chem. Heterocycl. Compd.
(Engl. Transl.) 2002, 38, 668.
(11) Amine (propyl-, cyclohexyl- or benzylamines) (1 mmol)
was added to the colorless solution of the pyrazoline 2 (1
mmol) in 10 mL THF or MeOH (the color of the solution
becomes brightly orange). Reaction mixture was left at r.t.
for 12 h. After evaporation of the solvent in vacuo, the
residue was diluted with a mixture of CHCl3–MeOH.
Further solid 5-aminopyrazoline 4 was filtered off or taken
as an oil.
(12) Igidov, N. M.; Koz’minykh, E. N.; Kolotova, N. V.;
Koz’minykh, V. O. Russ. Chem. Bull. 1999, 7, 1383.
(13) Pyrazoline 2 (1 mmol) was dissolved in 10 mL THF with
catalytic amount of the concentrated HCl and left at 50 °C
for 6 h. After solvent evaporation in vacuo, the oil was
diluted with Et2O from which pyrazole 3 was crystallized.
(5) Padwa, A. J. Org. Chem. 1965, 30, 1274.
(6) Typical Procedure:
Tosylhydrazine (1.02 g, 5.5 mmol) and catalytic amount of
the concentrated HCl were added to a solution of 3-aryl-1-
(3-phenyloxiran-2-yl)prop-2-en-1-one (1, 5 mmol) in 20 mL
THF. The reaction was carried out at r.t. for 12–18 h (control
by TLC). After evaporation of the solvent in vacuo the
residue was diluted with a mixture of Et2O-benzene (1:3).
Further solid pyrazoline 2 was filtered off and purified by
recrystallization using EtOH or benzene. The residue
mixture was divided on a column and pyrazole 3 and
additional pyrazolines 2 were taken.
(7) Selected physical and spectroscopic data.
Compound 2a: yield 77%, mp 169–172 °C (EtOH). IR
Synlett 2005, No. 3, 485–486 © Thieme Stuttgart · New York