1, path b). To avoid these problems, cyclic analogues with
chiral auxiliaries such as 1-3 have been used to prepare
optically active R-substituted serine derivatives.8 We report
here the direct asymmetric synthesis of R-substituted serine
derivatives by intramolecular alkylation of ꢀ-alkoxy-R-amino
esters derived from L-serine via memory of chirality.
Scheme 2
enolate intermediate A with a racemization barrier of ∼15.5
kcal/mol was proposed. On the basis of this barrier, the chiral
enolate was thought to undergo rapid cyclization within 10-3
s after its generation to give the cyclized products in 99%
ee. The extremely rapid intramolecular alkylation was
expected to underlie the high asymmetric induction at 20
°C because competitive racemization of the chiral enolate
was minimized. The high reactivity of the enolates generated
with KOH in DMSO prompted us to apply this method to
the asymmetric intramolecular alkylation of ꢀ-alkoxy-R-
amino esters. We had expected that the ꢀ-alkoxy enolates
generated from ꢀ-alkoxy-R-amino esters and KOH in DMSO
might undergo asymmetric cyclization predominantly over
ꢀ-elimination due to the high rate of intramolecular alkylation
(Scheme 1, k1 > k2).
We have developed a direct method for the asymmetric
R-alkylation of R-amino acid derivatives without the aid of
external chiral sources such as chiral auxiliaries or chiral
catalysts, i.e., memory of chirality.9 The inter- and intramo-
lecular R-alkylation of R-amino acid derivatives proceeded
in up to 98% ee via axially chiral enolate intermediates,
where enolate formation was performed at low temperatures
such as -78 to -60 °C to maintain the enantiomeric purity
of the chiral enolate.10 Recently, we reported that asymmetric
cyclization via memory of chirality could proceed with high
enantioselectivity even at 20 °C when powdered KOH in
DMSO was used as a base (Scheme 2).11 The axially chiral
We chose compounds 4 derived from L-serine as a
substrate and examined the asymmetric cyclization of 4
(Table 1). Treatment of 4 with powdered KOH in DMSO at
20 °C for 60 min gave, as expected, cyclization product 6
predominantly in 97% yield (entry 2). The product resulting
from ꢀ-elimination was not observed. Since the enantiose-
lectivity of the cyclization was moderate (75% ee), the
conditions for asymmetric cyclization of 4 were further
examined. Treatment of 4 with powdered NaOH, RbOH, or
CsOH in DMSO at 20 °C gave 6 in 85%, 93%, or 91% yield
and in 67%, 69%, or 77% ee, respectively (entries 1, 3, and
4). While the use of powdered CsOH in DMF at -20 °C
gave 6 in a slightly improved ee of 83%, this required a
long reaction time and promoted ꢀ-elimination (11%) (entries
4 vs 5). The use of iodide 5 instead of bromide 4 increased
the enantioselectivity of the asymmetric cyclization (entries
2 vs 7, 4 vs 8). Treatment of 5 with powdered CsOH in
DMSO at 20 °C gave 6 in 86% ee and 84% yield (entry 8).
The increase in the enantioselectivity of cyclization of the
iodides could be ascribed to their increased rates of cycliza-
tion. Similar effects of leaving groups on asymmetric
alkylation via memory of chirality have been reported by
Carlier and co-workers.12 The use of potassium hexameth-
yldisilazide (KHMDS) also gave cyclization product 6 in
high yield (96%) albeit in low enantioselectivity (34% ee)
(entry 6).
(7) (a) Shigematsu, N.; Kayakiri, N.; Okada, S.; Tanaka, H. Chem.
Pharm. Bull. 1997, 45, 236–242. (b) Kuwano, R.; Okuda, S.; Ito, Y. J.
Org. Chem. 1998, 63, 3499–3503. (c) Katz, J.; Overman, L. E. Tetrahedron
2004, 60, 9559–9568. (d) Hughes, R. A.; Thompson, S. P.; Alcaraz, L.;
Moody, C. J. J. Am. Chem. Soc. 2005, 127, 15644–15651. (e) Disadee,
W.; Ishikawa, T. J. Org. Chem. 2005, 70, 9399–9406. (f) Ramesh, R.; De,
K.; Chandrasekaran, S. Tetrahedron 2007, 63, 10534–10542.
(8) (a) Seebach, D.; Aebi, J. D. Tetrahedron Lett. 1984, 25, 2545–2548.
(b) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl.
1996, 35, 2708–2748. (c) Andrews, M. D.; Brewster, A. G.; Moloney, M. G.;
Owen, K. L. J. Chem. Soc., Perkin Trans. 1 1996, 227–228. (d) Andrews,
M. D.; Brewster, A. G.; Moloney, M. G. Synlett 1996, 612–614. (e)
Andrews, M. D.; Brewster, A. G.; Crapnell, K. M.; Ibbett, A. J.; Jones, T.;
Moloney, M. G.; Prout, K.; Watkin, D. J. Chem. Soc., Perkin Trans. 1
1998, 223–235. (f) Alezra, V.; Bonin, M.; Chiaroni, A.; Micouin, L.; Riche,
C.; Husson, H.-P. Tetrahedron Lett. 2000, 41, 1737–1740. (g) Alezra, V.;
Bonin, M.; Micouin, L.; Husson, H.-P. Tetrahedron Lett. 2001, 42, 2111–
2113. (h) Brunner, M.; Koskinen, A. M. P. Tetrahedron Lett. 2004, 45,
3063–3065. (i) Jime´nez-Ose´s, G.; Aydillo, C.; Busto, J. H.; Zurbano, M. M.;
Peregrina, J. M.; Avenoza, A. J. Org. Chem. 2007, 72, 5399–5402. (j)
Aydillo, C.; Jime´nez-Ose´s, G.; Busto, J. H.; Peregrina, J. M.; Zurbano,
M. M.; Avenoza, A. Chem. Eur. J. 2007, 13, 4840–4848.
(9) For reactions related to memory of chirality, see: (a) Beagley, B.;
Betts, M. J.; Pritchard, R. G.; Schofield, A.; Stoodley, R. J.; Vohra, S.
J. Chem. Soc., Chem. Commun. 1991, 924–925. (b) Kawabata, T.; Yahiro,
K.; Fuji, K. J. Am. Chem. Soc. 1991, 113, 9694–9696. (c) Betts, M. J.;
Pritchard, R. G.; Schofield, A.; Stoodley, R. J.; Vohra, S. J. Chem. Soc.,
Perkin Trans. 1 1999, 1067–1072. (d) Gerona-Navarro, G.; Bonache, M. A.;
Herranz, R.; Garc´ıa-Lo´pez, M. T.; Gonza´lez-Mun˜iz, R. J. Org. Chem. 2001,
66, 3538–3547. (e) Bonache, M. A.; Gerona-Navarro, G.; Mart´ın-Mart´ınez,
M.; Garc´ıa-Lo´pez, M. T.; Lo´pez, P.; Cativiela, C.; Gonza´lez-Mun˜iz, R.
Synlett 2003, 1007–1011. (f) Carlier, P. R.; Zhao, H.; DeGuzman, J.; Lam,
P. C.-H. J. Am. Chem. Soc. 2003, 125, 11482–11483. (g) Kawabata, T.;
Ozturk, O.; Suzuki, H.; Fuji, K. Synthesis 2003, 505–508. (h) Kawabata,
T.; Ozturk, O.; Chen, J.; Fuji, K. Chem. Commun. 2003, 162–163. (i)
Kawabata, T.; Matsuda, S.; Kawakami, S.; Monguchi, D.; Moriyama, K.
J. Am. Chem. Soc. 2006, 128, 15394–15395.
We next examined the effects of protective groups for the
ꢀ-hydroxy group of serine derivatives (Table 2). Upon
treatment with powdered CsOH in DMSO at 20 °C, methyl
ether 7 underwent intramolecular alkylation to give R-meth-
(10) (a) Kawabata, T.; Suzuki, H.; Nagae, Y.; Fuji, K. Angew. Chem.,
Int. Ed. 2000, 39, 2155–2157. (b) Kawabata, T.; Chen, J.; Suzuki, H.; Nagae,
Y.; Kinoshita, T.; Chancharunee, S.; Fuji, K. Org. Lett. 2000, 2, 3883–
3885. (c) Kawabata, T.; Kawakami, S.; Majumdar, S. J. Am. Chem. Soc.
2003, 125, 13012–13013. (d) Kawabata, T.; Kawakami, S.; Shimada, S.;
Fuji, K. Tetrahedron 2003, 59, 965–974. (e) Kawabata, T.; Majumdar, S.;
Tsubaki, K.; Monguchi, D. Org. Biomol. Chem. 2005, 3, 1609–1611. (f)
Kawabata, T.; Chen, J.; Suzuki, H.; Fuji, K. Synthesis. 2005, 5, 1368–
1377.
(11) Kawabata, T.; Moriyama, K.; Kawakami, S.; Tsubaki, K. J. Am.
Chem. Soc. 2008, 130, 4153–4157.
(12) (a) MacQuarrie-Hunter, S.; Carlier, P. R. Org. Lett. 2005, 7, 5305–
5308. (b) Carlier, P. R.; Lam, P. C.-H.; DeGuzman, J. C.; Zhao, H.
Tetrahedron: Asymmetry 2005, 16, 2998–3002.
3884
Org. Lett., Vol. 10, No. 17, 2008