5228
K.-H. Kim et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5225–5228
ents on the phenyl ring. Thus, it was found that a methoxy group
H
N
Br
improved the activity of 33 relative to 32 when placed at the 2-po-
sition of the aminophenyl pyridine substituent, while potency was
lost when a single methoxy group was placed on the 3- or 4-posi-
tion (34 or 35). Introduction of an hydroxymethyl group on the 2-,
3-, or 4-positions of the phenyl ring increases potency (36–38)
compared to 32. Similarly, compounds 39 and 40, which contain
hydroxyethyl groups on the phenyl ring, displayed improved po-
tency. In general, the ortho substituted compounds showed better
activity compared to the meta or para substituted compounds (36
vs 37/38 or 39 vs 40). Within the ortho substituted compounds,
small substituents (41 and 42) showed better activity compared
to compounds with bulky groups (43 and 44). The results pre-
sented in Table 4 indicate a preference for ortho substituents on
the nitrogen linked aryl group. Further investigations of modifica-
tions in this region of the molecule will be the subject of future
reports.
In summary, we have described the synthesis and SAR of a novel
series of benzo[c][2,7]naphthyridines as potent PDK-1 inhibitors.
The incorporation of an imidazole or pyridyl moiety on the 2-posi-
tion of the benzo[c][2,7]naphthyridine core resulted in the identi-
fication of compounds with improved potency. These compounds
bind at the active site of PDK-1 kinase as determined by the X-
ray crystal structure of the protein–drug complex.
N
N
R5
N
N
O
O
O
O
a
NH2
NH2
N
N
32-44
30
Scheme 3. Reagents: (a) aniline, 2-dicyclohexylphosphino-20-(N,N-dimethyl-
amino)biphenyl, K3PO4, Pd2dba3, DMSO, 100 °C.
Table 4
PDK-1 potency of benzonaphthyridine compounds: optimization at R5 position
H
N
N
R5
N
O
NH2
O
N
Acknowledgments
R5
IC50 (nM)
a
Compounds
32
33
34
35
36
37
38
39
40
41
42
43
44
H
283
74
434
383
47
67
142
24
91
51
30
505
>1000
We thank Drs. Tarek Mansour and Robert Abraham for their
support of this work. We also thank the members of the Wyeth
Chemical Technologies group for analytical and spectral
determination.
2-OCH3
3-OCH3
4-OCH3
2-CH2OH
3-CH2OH
4-CH2OH
2-CH2CH2OH
4-CH2CH2OH
2-NH2
References and notes
1. (a) Mora, A.; Komander, D.; Van Aalten, D. M. F.; Alessi, D. R. Semin. Cell Dev.
Biol. 2004, 15, 161; (b) Storz, P.; Toker, A. Front. Biosci. 2002, 7, 886.
2. (a) Mitsiades, C. S.; Mitsiades, N.; Koutsilieris, M. Curr. Cancer Drug Target 2004,
4, 235; (b) Hanada, M.; Feng, J.; Hemmings, B. A. Biochim. Biophys. Acta 2004,
1697, 3.
2-F
2-NHPh
2-OCH2Ph
a
3. Sansal, I.; Sellers, W. R. J. Clin. Oncol. 2004, 22, 2954.
Values are averages of two or more experiments.
4. (a) Islam, I.; Bryant, J.; Chou, Y.; Kochanny, M. J.; Lee, W.; Phillips, G. B.; Yu, H.;
Adler, M.; Whitlow, M.; Ho, E.; Lentz, D.; Polokoff, M. A.; Subramanyam, B.; Wu,
J. M.; Zhu, D.; Feldman, R. I.; Arnaiz, D. O. Bioorg. Med. Chem. Lett. 2007, 17,
3814; (b) Islam, I.; Brown, G.; Bryant, J.; Hrvatin, P.; Kochanny, M. J.; Phillips, G.
B.; Yuan, S.; Adler, M.; Whitlow, M.; Lentz, D.; Polokoff, M. A.; Wu, J. M.; Shen,
J.; Walters, J.; Ho, E.; Subramanyam, B.; Zhu, D.; Feldman, R. I.; Arnaiz, D. O.
Bioorg. Med. Chem. Lett. 2007, 17, 3819.
5. Gopalsamy, A.; Shi, M.; Boschelli, D. H.; Williamson, R.; Olland, A.; Hu, Y.;
Krishnamurthy, G.; Han, X.; Arndt, K.; Guo, B. J. Med. Chem. 2007, 50, 5547.
6. Wissner, A.; Berger, D. M.; Boschelli, D. H.; Floyd, M. B., Jr.; Greenberger, L. M.;
Gruber, B. C.; Johnson, B. D.; Mamuya, N.; Nilakantan, R.; Reich, M. F.; Shen, R.;
Tsou, H.-R.; Upeslacis, E.; Wang, Y. F.; Wu, B.; Ye, F.; Zhang, N. J. Med. Chem.
2000, 43, 3244.
7. (a) Itoh, T.; Mase, T. Tetrahedron Lett. 2005, 46, 3573; (b) Billingsley, K. L.;
Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 3484.
8. Boschelli, D. H.; Wang, Y. D.; Johnson, S.; Wu, B.; Ye, F.; Sosa, A.; Golas, J. M.;
Boschelli, F. J. Med. Chem. 2004, 47, 1599.
9. Wissner, A.; Floyd, M. B., Jr.; Dushin, R.; Fraser, H. L.; Hu, Y.; Maderna, A.;
Nittoli, T.; Wang, Y. D. WO 2008109613, 2008; Chem. Abstr. 2008, 149, 355880.
10. Compounds 28 and 31 were prepared with imidazolides.
11. PDB code: 3H9O.
As shown in Table 3, various small R4 substituents were intro-
duced on the pyridyl group. Compared to 24, compound 28 with
an amino group on the 50-position showed slightly better activity
(26 nM) while compound 29 with a hydroxy group on the 50-posi-
tion showed a slight decrease in potency. Even the 50-bromo-
substituted compound (30) retained moderate activity. However,
compounds 31 and 16, which have substituents on positions other
than the 50-position, lost significant activity. Thus, the position of
substitution on the pyridyl ring does influence potency.
Based on the SAR results presented in Tables 2 and 3, the most
potent compound 28 was chosen for further exploration. A series of
compounds with various substituted aminoaryl groups at the 50-
position of the pyridine ring were synthesized using Buchwald
conditions (Scheme 3).12 As shown in Table 4, compound 32 with
a simple phenyl group was 10-fold less potent than compound
28. We also looked at some compounds with small polar substitu-
12. Charles, M. D.; Schultz, P.; Buchwald, S. L. Org. Lett. 2005, 7, 3965.