10.1002/chem.201604788
Chemistry - A European Journal
FULL PAPER
2008, 10, 1115-1118; d) H. Zhou, Q. Xu, P. Chen, Tetrahedron 2008,
64, 6494-6499; e) Y. Zhang, V. B. Birman, Adv. Synth. Catal. 2009, 351,
2525-2529; f) K. Nakata, I. Shiina, Heterocycles 2010, 80, 169-175; g) I.
Shiina, K. Nakata, K. Ono, M. Sugimoto, A. Sekiguchi, Chem. Eur.
J.2010, 16, 167-172; h) D. Belmessieri, C. Joannesse, P. A. Woods, C.
MacGregor, C. Jones, C. D. Campbell, C. P. Johnston, N. Duguet, C.
Concellon, R. A. Bragg, A. D. Smith, Org. Biomol. Chem. 2011, 9, 559-
570; i) K. Nakata, K. Ono, I. Shiina, Heterocycles 2011, 82, 1171-1180;
j) I. Shiina, K. Ono, T. Nakahara, Chem. Commun. 2013, 49, 10700-
10702; k) H.-Y. Wang, K. Yang, D. Yin, C. Liu, D. A. Glazier, W. Tang,
Org. Lett. 2015, 17, 5272-5275.
A. C. Spivey, Y. Wei, H. Zipse, J. Am. Chem. Soc. 2012, 134, 9390-
9399.
[22] For a review on non-covalent sulfur interactions in medicinal chemistry,
see: a) B. R. Beno, K.-S. Yeung, M. D. Bartberger, L. D. Pennington, N.
A. Meanwell, J. Med. Chem. 2015, 58, 4383-4438; For selected
discussions of O-S interactions in isothiourea catalysis, see: b) P. Liu, X.
Yang, V. B. Birman, K. N. Houk, Org. Lett. 2012, 14, 3288-3291; c) M.
E. Abbasov, B. M. Hudson, D. J. Tantillo, D. Romo, J. Am. Chem. Soc.
2014, 136, 4492-4495; d) E. R. T. Robinson, D. M. Walden, C. Fallan,
M. D. Greenhalgh, P. H.-Y. Cheong, A. D. Smith, Chem. Sci. 2016,
DOI: 10.1039/C6SC00940A; For selected discussions of the origin of
O-S interactions, see: e) X. Zhang, Z. Gong, J. Li,T. Lu, J. Chem. Inf.
Model. 2015, 55, 2138-2153; f) J. G. Ángyán, Á. Kucsman, R. A. Poirier,
I. G. Csizmadia, J. Mol. Struct.: THEOCHEM 1985, 123, 189-201; g) M.
Iwaoka, S. Takemoto, S. Tomoda, J. Am. Chem. Soc. 2002, 124,
10613-10620; h) J. S. Murray, P. Lane, P. Politzer, Int. J. Quantum
Chem. 2008, 108, 2770-2781; i) K. A. Brameld, B. Kuhn, D. C. Reuter,
M. Stahl, J. Chem. Inf. Model. 2008, 48, 1–24
[15] Desymmetrization, see: a) V. B. Birman, H. Jiang, X. Li, Org. Lett. 2007,
9, 3237-3240; b) J. Merad, P. Borkar, T. BouyonYenda, C. Roux, J.-M.
Pons, J.-L. Parrain, O. Chuzel, C. Bressy, Org. Lett. 2015, 17, 2118-
2121.
[16] H. B. Kagan, J. C. Fiaud, in Topics in Stereochemistry, Vol 18, (Eds.: E.
L. Eliel, S. H. Wilen), John-Wiley and Sons, New York, 1988; pp 249–
330.
[17] Throughout this manuscript, reaction conversions and selectivity factors
(S) were calculated using the equations outlined by Kagan in ref. 16.
Reaction conversions were mostly calculated from HPLC
[23] For a review on the importance of nitrogen cation-π interactions in
asymmetric organocatalysis, see: S. Yamada, J. S. Fossey, Org.
Biomol. Chem. 2011, 9, 7275-7281.
measurements according to the equation: c = (100 × eealcohol) / (eeester
+
[24] The trends in selectivity observed upon variation of the aromatic
substituent may be rationalised by considering the electrostatic
component of the cation-π interation, see: a) S. Mecozzi, A. P. West, D.
A. Dougherty, Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571; b)
J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303-1324; c) D. A.
Dougherty, Acc. Chem. Res. 2013, 46, 885-893; Substituent effects in
cation-π interactions have aslo been rationalised by considering local
interactions between the aromatic substituent and the ion, see: d) S. E.
Wheeler, K. N. Houk, J. Am. Chem. Soc. 2009, 131, 3126-3127; e) S. E.
Wheeler, Acc. Chem. Res. 2013, 46, 1029-1038.
eealcohol). Conversions could also be determined by 1H NMR
spectroscopy, with the two methods providing consistent results.
Selectivity factors were calculated using the reaction conversion (c) and
the ee of the recovered alcohol according to the equation: S = ln{[(1-
c)(1-eealcohol)] / [(1-c)(1+eealcohol)]}.
[18] Authentic racemic samples of all isobutyric esters were synthesised
using a DMAP-catalysed acylation, see the Supporting Information.
[19] Throughout, the absolute configuration of the major enantiomer of the
recovered alcohols were determined by comparison of specific rotations
with literature values, see the Supporting Information. For alcohols
without appropriate literature specific rotations the configurations were
assigned by analogy.
[25] For reviews on aromatic interactions, see: a) E. A. Meyer, R. K.
Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210-1250;
Angew. Chem. 2003, 115, 1244-1287; b) C. R. Martinez, B. L. Iverson,
Chem. Sci. 2012, 3, 2191-2201; c) E. H. Krenske, K. N. Houk, Acc.
Chem. Res. 2013, 46, 979-989; For an electrostatic model of aromatic-
aromatic interactions, see: d) C. A. Hunter, J. K. M. Sanders, J. Am.
Chem. Soc. 1990, 112, 5525-5534; For models considering local
aromatic substituent interactions, see: e) S. E. Wheeler, K. N. Houk, J.
Am. Chem. Soc. 2008, 130, 10854-10855; f) S. E. Wheeler, J. Am.
Chem. Soc. 2011, 133, 10262-10274.
[18] C. S. Lancefield, O. S. Ojo, F. Tran, N. J. Westwood, Angew. Chem. Int.
Ed. 2015, 54, 258-262; Angew. Chem. 2015, 127, 260-264.
[19] For a previous example of linear regression analysis to determine a
high selectivity factorfor KR, see: H. F. T. Klare, M. Oestreich, Angew.
Chem. Int. Ed. 2007, 46, 9335-9338; Angew. Chem. 2007, 119, 9496-
9499.
[20] For kinetic analysis on a related HBTM-catalyzed esterification of a
cyclic secondary alcohol, see: A. J. Wagner, S. D. Rychnovsky, Org.
Lett. 2013, 15, 5504-5507.
[26] The data underpinning this research can be found at DOI:
[21] For computational and kinetic studies on the DMAP-catalyzed acylation
of alcohols, see: a) S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich, H.
Zipse, Chem. Eur. J.2005, 11, 4751-4757; b) E. Larionov, M. Mahesh,
This article is protected by copyright. All rights reserved.