T. Majid et al. / Tetrahedron Letters 45 (2004) 2137–2139
2139
3. Abdou, W. M.; El-Khoshnieh, Y. O.; Salem, M. A. I.;
Barghash, R. F. Synlett 2002, 9, 1417.
4. (a) Sachs, A. Chem. Ber. 1907, 40, 668; (b) Cameron, M.;
Gowenlock, B. G.; Boyd, A. S. F. J. Chem. Soc., Perkin.
Trans. 2 1996, 2271.
5. Cecchi, L.; Colotta, V.; Melani, F.; Palazzino, G.; Filac-
chioni, G.; Martini, C.; Giannaccini, G.; Lucacchini, A.
J. Pharm. Sci. 1989, 78, 437–442.
6. Yuan, J.; Gulianello, M.; De Lombaert, S.; Brodbeck, R.;
Kieltyka, A.; Hodgetts, K. J. Bioorg. Med. Chem. Lett.
2002, 12, 2133–2136.
It appears that the reaction proceeds through the nitroso
pyrazole 5 (by LCMS analysis20) with subsequent
further reduction to the amino pyrazole 8. The initial
cyclization (4 fi 5) usually occurs within 2 h and the
reactions are allowed to proceed overnight to ensure
complete conversion. The reaction is proposed to go
through the mechanism in Scheme 3. After cyclization to
5 hydrazine addition to the aryl nitroso intermediate
gives the hydroxy compound 6. Loss of water and
rearrangement gives the diazo compound 7, which after
loss of N2, yields the amino pyrazole compound 8.
7. Kopp, M.; Lancelot, J.-C.; Dallemagne, P.; Rault, S.
J. Heterocycl. Chem. 2001, 38, 1045.
8. Fray, J. M.; Bull, D. J.; Kinns, M. J. Chem. Res. Miniprint
1992, 1, 227.
Representative example: To a 0 ꢁC solution of 1-(2-
furyl)-butane-1,2,3-trione 2-oxime (4.70 g; 26.0 mmol)
in EtOH (70.0 mL) was added dropwise hydrazine
hydrate (12.0 mL; 6.60 g; 206 mmol). After addition, the
reaction mixture was warmed to rt and allowed to stir
for 16 h, at which point TLC and LCMS showed
essentially complete conversion. The reaction mixture
was concentrated, taken up in EtOAc and washed with
3 N HCl. The organic layer was discarded, and the
aqueous portion basified with 10 N NaOH and then
extracted with EtOAc. The organic extracts were dried
(Na2SO4) and concentrated leaving 3.62 g (22.2 mmol;
85%) of 5-(2-furyl)-3-methyl-1H-pyrazol-4-ylamine as a
tan solid. HPLC RT ¼ 0:45 MS (ESI) 164 (M+H) cal-
9. Pd/C (a) Vincentini, C. B.; Guarneri, M.; Scatturin, A.;
Giori, P.; Heilman, W. Farmaco 1996, 51, 609; (b)
Vincentini, C. B.; Ferretti, V.; Veronese, A. C.; Guarneri,
M.; Manfrini, M.; Giori, P. Heterocycles 1995, 41, 497; (c)
Vincentini, C. B.; Veronese, A. C.; Poli, T.; Guarneri, M.;
Giori, P. Heterocycles 1991, 32, 727; Raney Ni: (d)
Belyaev, E. Yu.; Semina, L. P.; Shpinel, Ya. I. Zh. Org.
Khim. 1973, 9, 273.
10. Aiello, E.; Aiello, S.; Mingoia, F.; Bacchi, A.; Pelizzi, G.;
Musiu, C.; Setzu, M. G.; Pani, A.; La Colla, P.; Marongiu,
M. E. Bioorg. Med. Chem. 2000, 8, 2719.
11. Pace, A.; Buscemi, S.; Vivona, N.; Caronna, T. Hetero-
cycles 2000, 53, 183.
ꢀ
ꢀ
12. Cuadrado, P.; Gonzalez-Nogal, A. M.; Martınez, S.
1
culated for C8H9N3O (163.18); H NMR d 7.46 (d, 1H,
Tetrahedron 1997, 53, 8585.
J ¼ 1:2 Hz), 6.56 (d, 1H, J ¼ 3:1 Hz), 6.49 (dd, 1H,
13. Weinstock, J. J. Org. Chem. 1961, 26, 3511.
14. (a) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto,
G. Synthesis 1999, 453; (b) Evans, G. B.; Furneaux, R. H.;
Gainsford, G. J.; Hanson, J. C.; Kicska, G. A.; Sauve, A.
A.; Schramm, V. L.; Tyler, P. C. J. Med. Chem. 2003, 46,
155.
15. A number of b-diketones are commercially available.
Those diketones that were not commercially available
were synthesized following the procedure of Popic et al.
Popic, V. V.; Korneev, S. M.; Nikolaev, V. A.; Korobit-
syna, I. K. Synthesis 1991, 195–198.
J ¼ 3:3, 1.8 Hz), 2.23 (s, 3H).
In conclusion, we have developed a convenient synthesis
of 4-amino-3,5-disubstituted pyrazoles in one-step from
the corresponding diketo oximes. The reaction has been
shown to work well with a number of substrates
allowing for both aryl and alkyl groups.
16. Saloutin, V. I.; Burgart, Y. V.; Skryabina, Z. E.; Kuzueva,
O. G. J. Fluorine Chem. 1997, 84, 107.
Acknowledgements
17. (a) Koehl, W.; Eisenbrand, G. Toxicology 1999, 743; (b)
New Food Ind. 1978, 20, 20; (c) Coulston, F.; Olajos, E. J.
Ecotoxicol. Environ. Saf. 1982, 6, 89; (d) Nitrosamines
1988, 117.
18. There were numerous uncharacterized side products
formed in the reaction. However, the overall yield of
50% was still an improvement over the two-step protocol
for this compound (40%).
The authors would like to thank Dr. Kent Neuensch-
wander and Mr. Anthony Scotese for their help in
performing some of the experiments included in
this manuscript.
References and notes
19. The nitroso pyrazole compound was formed after 1 h
(TLC and LCMS analysis).
1. (a) Winans, C. F.; Adkins, H. J. Am. Chem. Soc. 1933, 55,
4167; (b) Boiadjiev, S. E.; Lightner, D. A. Tetrahedron
2002, 58, 7411; (c) Boiadjiev, S. E.; Lightner, D. A.
Tetrahedron: Asymmetry 2002, 13, 1721.
2. Yamamoto, H.; Eikyu, T.; Okuda, S.; Kawabata, K.;
Takasugi, H.; Tanaka, H.; Matsumoto, S.; Matsumoto,
Y.; Tawara, S. Bioorg. Med. Chem. 2002, 10, 1535.
20. The LC retention time for the intermediate nitroso
compound of the tandem reaction (1 fi 3) was identical
to 2, which was characterized by LCMS. HPLC (Synergi
2U Hydro-RP 20 · 4.0 mm Col, water (0.1% trifluoroacetic
acid)/acetonitrile (0.1% trifluoroacetic acid) ¼ 10/90 fi 90/
10): Rf ¼ 2:51 min. C10H9N3O (187.20) MS (ESI) 188
(M+H).