3-POLYFLUOROALKYL-1,5-DIPHENYLPYRAZOLES IN SUZUKI CROSS-COUPLING
1267
10. Emmadi, N.R., Bingi, C., Kotapalli, S.S., Ummanni, R.,
Nanubolu, J.B., and Atmakur, K., Bioorg. Med. Chem.
Lett., 2015, vol. 25, p. 2118.
suspension of culture by bacterial standard of turbidity
100 millions of microbe bodies in 1 mL (10 digits).
The obtained suspension (0.2 mL) was seeded into test
tubes with 5 mL of nutritive medium and the tested
compound of an appropriate concentration. Test tubes
were incubated at 37°С for 7–10 days. Three parallel
tests were performed with each concentration.
11. Foster, R.S., Adams, H., Jakobi, H., and Harrity, J.P.A.,
J. Org. Chem., 2013, vol. 78, p. 4049.
12. Ivanova, A.E., Burgart, Ya.V., Saloutin, V.I.,
Slepukhin, P.A., Borisevich, S.S., and Khursan, S.L.,
J. Fluor. Chem., 2017, vol. 195, p. 47.
NMR spectra were registered on a spectrometer
Bruker Avance-500 [500 МHz, internal reference SiMe4
(1Н), 470 МHz, reference С6F6 (19F)]. IR spectra were
recorded on a spectrometer Perkin Elmer Spectrum One
with ATR method or by DRA. Melting points were
measured in open capillaries on an apparatus for melting
points measurement Stuart SMP30. Column chromato-
graphy was performed on silica gel 60 (0.063–0.02 mm).
Elemental analysis (С, Н, N) was carried out on analyzer
Perkin Elmer PE 2400 series II. Microwave syntheses
were performed in hermetic vials (35 mL) in UHF
apparatus CEM Discover & Explorer with resulting power
in the range 0–300 W. Temperature was monitored
with IR detector. The content of the vial was mixed by
a magnet with regulated rotation speed positioned
under UHF cavity, and a Teflon magnetic stick inside
the vial. Profiles of temperature and power were
registered with software controlled by a computer.
13. Ivanova, A.E., Khudina, O.G., Burgart, Ya.V.,
Saloutin, V.I., and Kravchenko, M.A., Russ.
Chem. Bull., 2011, vol. 60, p. 2396. doi 10.1007/
s11172-011-0368-4
14. Ivanova, A.E., Burgart, Ya.V., and Saloutin, V.I., Chem.
Heterocycl. Compd., 2013, vol. 49, p. 1128. doi
10.1007/s10593-013-1353-7
15. Ivanova, A.E., Burgart, Ya.V., and Saloutin, V.I.,
Mendeleev Commun., 2016, vol. 26, p. 106.
16. Ivanova, A.E., Burgart, Ya.V., Saloutin, V.I.,
Orshanskaya, Ya.R., and Zarubaev, V.V., Mendeleev
Commun., 2018, vol. 28, p. 52.
17. Frizzo, C.P., Moreira, D.N., Guarda, E.A., Fiss, G.F.,
Marzari, M.R.B., Zanatta, N., Bonacorso, H.G., and
Martins, M.A.P., Catal. Commun., 2009, vol. 10, p. 1153.
18. Wang, Y., Han, J., Chen, J., and Cao, W., Tetrahedron,
2015, vol. 71, p. 8256.
19. Pennell, A.M.K., Aggen, J.B., Sen, S., Chen, W., Xu, Y.,
Sullivan, E., Li, L., Greenman, K., Charvat, T., Hansen, D.,
Dairaghi, D.J., Wright, J.J.K., and Zhang, P., Bioorg.
Med. Chem. Lett., 2013, vol. 23, p. 1228.
ACKNOWLEDGMENTS
20. Sato, K., Takahagi, H., Kubo, O., Hidaka, K.,
Yoshikawa, T., Kamaura, M., Nakakariya, M., Amano, N.,
Adachi, R., Maki, T., Take, K., Takekawa, S., Kitazaki, T.,
and Maekawa, T., Bioorg. Med. Chem., 2015, vol. 23,
p. 4544.
21. Manchester, J.I., Dussault, D.D., Rose, J.A., Boriack-
Sjodin, P.A., Uria-Nickelsen, M., Ioannidis, G., Bist, S.,
Fleming, P., and Hull, K.G., Bioorg. Med. Chem. Lett.,
2012, vol. 22, p. 5150.
This study was performed under the financial
support of the Russian Science Foundation (project
no. 16-13-10255).
REFERENCES
1. Fustero, S., Sanchez-Rosello, M., Barrio, P., and Simon-
Fuentes, A., Chem. Rev., 2011, vol. 111, p. 6984.
2. Giornal, F., Pazenok, S., Rodefeld, L., Lui, N., Vors, J.-P.,
22. Arban, R., Benedetti, R., Bonanomi, G., Capelli, A.-M.,
Castiglioni, E., Contini, S., Degiorgis, F., Di Felice, P.,
Donati, D., Fazzolari, E., Gentile, G., Marchionni, C.,
Marchioro, C., Messina, F., Micheli, F., Oliosi, B.,
Pavone, F., Pasquarello, A., Perini, B., Rinaldi, M.,
Sabbatini, F.M., Vitulli, G., Zarantonello, P., Di Fabio, R.,
and St-Denis, Y., Chem. Med. Chem., 2007, vol. 2, p. 528.
23. Jeon, S.L., Choi, J.H., Kim, B.T., and Jeong, I.H.,
J. Fluor. Chem., 2007, vol. 128, p. 1191.
24. Singh, S.P., Kumar, V., Aggarwal, R., and Elguero, J.,
and Leroux, F.R., J. Fluor. Chem., 2013, vol. 152, p. 2.
3. Sloop, J.C., Holder, C., and Henary, M., Eur. J. Org.
Chem., 2015, vol. 16, p. 3405.
4. Lipunova, G.N., Nosova, E.V., Charushin, V.N., and
Chupakhin, O.N., J. Fluor. Chem., 2015, vol. 175, p. 84.
5. Sadimenko, A.P., Adv. Heterocycl. Chem., 2001, vol. 80,
p. 157.
6. Schmidt, A. and Dreger, A., Curr. Org. Chem., 2011,
vol. 15, p. 1423.
7. Lamberth, C., Heterocycles, 2007, vol. 71, p. 1467.
J. Heterocycl. Chem., 2006, vol. 43, p. 1003.
8. Elguero, J., Silva, A.M.S., and Tom, A.C., Modern
Heterocyclic Chemistry, Weinheim: Wiley-VCH, 2011.
9. Li, F., Nie, J., Sun, L., Zheng, Y., and Ma, J.-A., Angew.
Chem., Int. Ed., 2013, vol. 52, p. 6255.
25. Yashchenko, T.N. and Mecheva, I.S., Rukovodstvo po
laboratornym issledovaniyam pri tuberkuleze
(Guidelines for Laboratory Research in Tuberculosis),
Moscow: Meditsina, 1973.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 54 No. 8 2018