10.1002/anie.201908372
Angewandte Chemie International Edition
COMMUNICATION
[5]
For reviews on reductive decyanations, see: a) J.-M. R. Mattalia,
Beilstein J. Org. Chem. 2017, 13, 267–284; b) J.-M. Mattalia, C.
Marchi-Delapierre, H. Hazimeh, M. Chanon, ARKIVOC 2006 (iv), 90–
118.
Streuff, Angew. Chem. Int. Ed. 2017, 56, 6103–6106; Angew. Chem.
2017, 129, 6199–6202.
[13] Selected references: a) A. Gansäuer, F. Piestert, I. Huth, T. Lauterbach,
Synthesis 2008, 3509–3515; b) A. Fernández-Mateos, P. H. Teijón, L.
Mateos Burón, R. Rabanedo Clemente, R. Rubio González, J. Org.
Chem. 2007, 72, 9973–9982; c) D. P. Curran, C. M. Seong,
Tetrahedron 1992, 48, 2175–2190. See also: d) A. L. J. Beckwith, D. M.
O’Shea, S. Gerba, S. W. Westwood, J. Chem. Soc., Chem. Commun.
1987, 666–667.
[6]
a) T. Kawamoto, K. Oritani, D. P. Curran, A. Kamimura, Org. Lett. 2018,
20, 2084–2087; b) T. Patra, S. Agasti, A. Akanksha, D. Maiti, Chem.
Commun. 2013, 49, 69–71; c) M. Weidauer, C. I. Someya, E. Irran, S.
Enthaler, Asian J. Org. Chem. 2013, 2, 150–156; d) M. Tobisu, R.
Nakamura, Y. Kita, N. Chatani, J. Am. Chem. Soc. 2009, 131, 3174–
3175.
[14] a) F. Rehbaum, K.-H. Thiele, S. I. Trojanov, J. Organomet. Chem. 1991,
410, 327–333; b) P. A. Seewald, G. S. White, D. W. Stephan, Can. J.
Chem. 1988, 66, 1147–1152; c) E. J. M. De Boer, J. H. Teuben, J.
Organomet. Chem. 1977, 140, 41–45.
[7]
[8]
a) X.-Q. Chu, D. Ge, Z.-L. Shen, T.-P. Loh, ACS Catal. 2018, 8, 258–
271; b) R. López, C. Palomo, Angew. Chem. Int. Ed. 2015, 54, 13170–
13184; Angew. Chem. 2015, 127, 13366–13380.
a) T. Kawamoto, Y. Shimaya, D. P. Curran, A. Kamimura, Chem. Lett.
2018, 47, 573–575; b) T. Kawamoto, S. J. Geib, D. P. Curran, J. Am.
Chem. Soc. 2015, 137, 8617–8622; c) D. P. Curran, C. M. Seong,
Synlett 1991, 107–108; d) D. P. Curran, C. M. Seong, J. Am. Chem.
Soc. 1990, 112, 9401–9403.
[15] a) J. Streuff, D. Himmel, S. L. Younas, Dalton Trans. 2018, 47, 5072–
5082; b) J. Streuff, M. Feurer, G. Frey, A. Steffani, S. Kacprzak, J.
Weweler, L. H. Leijendekker, D. Kratzert, D. A. Plattner, J. Am. Chem.
Soc. 2015, 137, 14396–14405.
[16] For details on the DFT calculations and the interpretation of the CV
results, see the Supporting Information.
[9]
a) H.-Y. Kang, W.-S. Hong, Y. S. Cho, H. Y. Koh, Tetrahedron Lett.
1995, 36, 7661–7664. See also: b) G. A. Molander, J. P. Wolfe, J. Braz.
Chem. Soc. 1996, 7, 335–341.
[17] a) C. D.-T. Nielsen, J. Burés, Chem. Sci. 2019, 10, 348–353; b) J.
Burés, Angew. Chem. Int. Ed. 2016, 55, 2028–2031; Angew. Chem.
2016, 128, 2068–2071.
[10] E. Doni, J. A. Murphy, Org. Chem. Front. 2014, 1, 1072–1076.
[11] For selected reviews on titanium(III) catalysis, see: a) J. Streuff, Chem.
Rec. 2014, 14, 1100–1113; b) S. P. Morcillo, D. Miguel, A. G. Campaña,
L. Álvarez de Cienfuegos, J. Justicia, J. M. Cuerva, Org. Chem. Front.
2014, 1, 15–33; c) A. Gansäuer, J. Justicia, C.-A. Fan, D. Worgull, F.
Piestert, Top. Curr. Chem. 2007, 279, 25–52.
[18] A. Gansäuer, C. Kube, K. Daasbjerg, R. Sure, S. Grimme, G. D. Fianu,
D. V. Sadasivam, R. A. Flowers II, J. Am. Chem. Soc. 2014, 136,
1663–1671.
[19] M. S. Dunlap, K. M. Nicholas, J. Organomet. Chem. 2001, 630, 125–
131.
[12] For recent examples, see: a) Y. Chengbo, T. Dahmen, A. Gansäuer, J.
Norton, Science 2019, 364, 764–767; b) T. Liedtke, T. Hilche, S. Klare,
A. Gansäuer, ChemSusChem 2019, 12, 3166–3171; c) L. H.
Leijendekker, J. Weweler, T. M. Leuther, D. Kratzert, J. Streuff, Chem.
Eur. J. 2019, 25, 3382–3390; d) Z. Zhang, R. B. Richrath, A. Gansäuer,
ACS Catal. 2019, 9, 3208–3212; e) X. Wu, W. Hao, K.-Y. Ye, B. Jiang,
G. Pombar, Z. Song, S. Lin, J. Am. Chem. Soc. 2018, 140, 14836–
14843; f) T. Liedtke, P. Spannring, L. Riccardi, A. Gansäuer, Angew.
Chem. Int. Ed. 2018, 57, 5006–5010; Angew. Chem. 2018, 130, 5100–
5104; g) R. B. Richrath, T. Olyschläger, S. Hildebrandt, D. G. Enny, G.
D. Fianu, R. A. Flowers II, A. Gansäuer, Chem. Eur. J. 2018, 24, 6371–
6379; h) V. K. Chenniappan, S. Silwal, R. J. Rahaim, ACS Catal. 2018,
8, 4539–4544; i) L. H. Leijendekker, J. Weweler, T. M. Leuther, J.
[20] R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, J. Am. Chem.
Soc. 2004, 126, 7853–7864.
[21] Owing to the presence of added ZnCl2, the lower limit of the
measurement was reduced to E = –1.2 V, which prevented the
detection of [Cp2TiCl2]–.
[22] D. Gourier, D. Vivien, E. Samuel, J. Am. Chem. Soc. 1985, 107, 7418–
7423.
[23] [Cp2Ti]+ is usually not present in solutions of zinc-reduced Cp2TiCl2 but
generated during the CV measurement, see ref. 20. In our case,
however, the presence of ten catalyst equivalents of ZnCl2 led to the
exclusive formation of [Cp2Ti]+.
4
This article is protected by copyright. All rights reserved.