Monoprotection of Diols as a Key Step for the
Selective Synthesis of Unequally Disubstituted
Diamondoids (Nanodiamonds)†
Hartmut Schwertfeger,‡ Christian Würtele,§ Michael Serafin,§
Heike Hausmann,‡ Robert M. K. Carlson,|
Jeremy E. P. Dahl,| and Peter R. Schreiner*,‡
Institut fu¨r Organische Chemie and Institut fu¨r Anorganische
und Analytische Chemie, Justus-Liebig-UniVersita¨t,
Heinrich-Buff-Ring 58, 35392 Giessen, Germany, and
MolecularDiamond Technologies, CheVron Technology
Ventures, 100 CheVron Way, Richmond, California 94802
FIGURE 1. Examples of diamondoids: adamantane (1), diamantane
(2), triamantane (3), [121]tetramantane (4), (M)-[123]tetramantane (4a),
and [1(2,3)4]pentamantane (5).
[1(2,3)4]pentamantane (5).3-5 The synthesis of thiol derivatives6
led to the preparation of diamondoid-SAMs, which display
negative electron affinity (NEA) upon irradiation with X-rays.7
Since the selective mono- and also the difunctionalization of
diamondoids with equal substituents is now a straightforward
task, we attempted to synthesize nanodiamonds with two
different substituents. These building blocks would make the
use of diamondoids even more interesting (e.g., to control and
tune the NEA effect7 or for the preparation of polymers). In
our recent review,2 we showed that besides 1 the derivatization
of diamondoids having two different substituents at their tertiary
positions has only been achieved for 2. Burkhard, Janku, and
Vodicka studied brominations of diamantanecarboxylic acids
and their hydrolysis to hydroxy carboxylic acids.8 Although the
bromination route via the carboxylic acids leads to unequally
disubstituted diamantane derivatives, these reactions either have
low yields or the mixtures are hard to separate even with
advanced HPLC techniques.9 Recently, Padmanaban et al.
treated diamantane-4,9-diol (6, Scheme 1) with equimolar
amounts of reagent to obtain 4-hydroxy-9-diamantylmethacry-
late, but this reaction proceeded in only 5% yield.10
ReceiVed June 30, 2008
The monoprotection (desymmetrization) of diamondoid,
benzylic, and ethynyl diols has been achieved using fluori-
nated alcohols such as 2,2,2-trifluoroethanol (TFE) under
acidic conditions. This practical acid-catalyzed SN1 reaction
opens the door for the synthesis of novel bifunctional
diamondoids. With diamantane as an example, we show that
the resulting monoethers can be used to prepare selectively,
for instance, amino or nitro alcohols and unnatural amino
acids. These are important compounds in terms of the
exploration of electronic, pharmacological, and material
properties of functionalized nanodiamonds.
Since it is possible to prepare the bisapical diol 6 in high
yield directly from 2 using 100% nitric acid,5 this linear
(3) Fokin, A. A.; Tkachenko, B. A.; Gunchenko, P. A.; Gusev, D. V.;
Schreiner, P. R. Chem.sEur. J. 2005, 11, 7091–7101.
(4) (a) Schreiner, P. R.; Fokina, N. A.; Tkachenko, B. A.; Hausmann, H.;
Serafin, M.; Dahl, J. E. P.; Liu, S.; Carlson, R. M. K.; Fokin, A. A. J. Org.
Chem. 2006, 71, 6709–6720. (b) Fokin, A. A.; Schreiner, P. R.; Fokina, N. A.;
Tkachenko, B. A.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Liu, S.; Carlson,
R. M. K. J. Org. Chem. 2006, 71, 8532–8540. (c) Fokin, A. A.; Butova, E. D.;
Chernish, L. V.; Fokina, N. A.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner,
P. R. Org. Lett. 2007, 9, 2541–2544.
(5) Fokina, N. A.; Tkachenko, B. A.; Merz, A.; Serafin, M.; Dahl, J. E. P.;
Carlson, R. M. K.; Fokin, A. A.; Schreiner, P. R. Eur. J. Org. Chem. 2007,
4738–4745.
The naturally occurring1 class of so-called diamondoids has
received considerable attention during the past few years.2 These
nanometer-sized diamond-like molecules (nanodiamonds) pos-
sess a variety of different shapes (e.g., stick or pyramidal), and
some of them are even chiral (Figure 1). Recently, our group
was able to synthesize not only derivatives of diamantane
(2), but also of triamantane (3), [121]tetramantane (4), and
(6) Tkachenko, B. A.; Fokina, N. A.; Chernish, L. V.; Dahl, J. E. P.; Liu,
S.; Carlson, R. M. K.; Fokin, A. A.; Schreiner, P. R. Org. Lett. 2006, 8, 1767–
1770.
(7) Yang, W. L.; Fabbri, J. D.; Willey, T. M.; Lee, J. R. I.; Dahl, J. E. P.;
Carlson, R. M. K.; Schreiner, P. R.; Fokin, A. A.; Tkachenko, B. A.; Fokina,
N. A.; Meevasana, W.; Mannella, N.; Tanaka, K.; Zhou, X. J.; van Buuren, T.;
Kelly, M. A.; Hussain, Z.; Melosh, N. A.; Shen, Z.-X. Science 2007, 316, 1460–
1462.
† Functionalized Nanodiamonds. 10. For part 9, see: Willey, T. M.; Fabbri,
J. D.; Lee, J. R. I.; Schreiner, P. R.; Fokin, A. A.; Tkachenko, B. A.; Fokina,
N. A.; Dahl, J. E. P.; Carlson, R. M. K.; Vance, A. L.; Yang, W.; Terminello,
L. J.; van Buuren, T.; Melosh, N. A. J. Am. Chem. Soc. 2008, 130, 10536-10544.
‡ Institut fu¨r Organische Chemie, Justus-Liebig-Universita¨t.
(8) (a) Burkhard, J.; Janku, J.; Vodicka, L. Sb. Vys. Sk. Chem. Techn. 1983,
D47, 73–99. (b) Janku, J.; Burkhard, J.; Vodicka, L. Sb. Vys. Sk. Chem. Techn.
1984, D49, 25–38. (c) Vodicka, L.; Janku, J.; Burkhard, J. Collect. Czech. Chem.
Commun. 1983, 48, 1162–1172.
§ Institut fu¨r Anorganische und Analytische Chemie, Justus-Liebig-Universita¨t.
| MolecularDiamond Technologies.
(1) (a) Landa, S.; Machacek, V. Collect. CzechosloV. Chem. Commun. 1933,
5, 1–5. (b) Hala, S.; Landa, S.; Hanus, V. Angew. Chem., Int. Ed. 1966, 5, 1045–
1046. (c) Dahl, J. E. P.; Liu, S.; Carlson, R. M. K. Science 2003, 299, 96–99.
(2) Schwertfeger, H.; Fokin, A. A.; Schreiner, P. R. Angew. Chem., Int. Ed.
2008, 47, 1022–1036.
(9) Schwertfeger, H. Diploma thesis, 2006.
(10) Padmanaban, M.; Chakrapani, S.; Lin, G.; Kudo, T.; Parthasarathy, D.;
Anyadiegwu, C.; Antonio, C.; Dammel, R.; Liu, S.; Lam, F.; Maehara, T.;
Iwasaki, F.; Yamaguchi, M. J. Photopol. Sci. Technol. 2007, 20, 719–728.
10.1021/jo801321s CCC: $40.75
Published on Web 08/29/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 7789–7792 7789