M. Krasavin et al. / Tetrahedron Letters 49 (2008) 5241–5243
5243
Table 1
TMSCl-promoted MCRs of N-substituted 5-piperazin-1-yl-1,3,4-thiadiazol-2-amines 1, aldehydes and isonitriles
R3
H
i. 1 eq. R2CHO, MeCN, reflux, 2 h
N
ii. TMSCl (1 eq.), MeCN/DCM, 30 min
N
N
S
iii. R3NC
N
N
R1
N
N
R1
N
R2
N
S
N
NH2
1
2
Entry
R1
R2
R3
Yield (%)
a
b
c
2-PyCH2
Allyl
3-MeOC6H4CH2
Bn
4-EtC6H4
4-MeC6H4
4-FC6H4
3-FC6H4
Cyclopentyl
cyclopentyl
tert-Butyl
78a
72a
84a
92a
d
tert-Butyl
O
e
Ph
tert-Butyl
56a
N
*
f
g
3-ClC6H4CH2
4-NCC6H4CH2
Ph
Ph
tert-Butyl
tert-Butyl
75a
88a
O
h
i
4-EtC6H4
tert-Butyl
67b
*
O
3-MeC6H4
tert-Butyl
48b
*
j
k
4-FC6H4CO
tert-BuNHCO
3-MeC6H4
4-EtC6H4
tert-Butyl
Cyclopentyl
78b
92b
O
O
l
4-FC6H4
Cyclopentyl
69b
N
H
*
a
Yield after chromatography.
Yield after product isolation by simple filtration (total yield may be higher).
b
9. (a) Herrling, S. German Patent DE 2755615, 1977; Chem. Abstr. 1977, 91,
91655.; (b) Doria, G.; Passarotti, C.; Sala, R.; Magrini, R.; Sberze, P. Farmaco Ed.
Sci. 1986, 41, 737–746.
screening compound collection.
11. We have observed that the complete formation of the imine intermediate prior
to the addition of other reactants and the promoter is essential: it suppresses
by-product formation and also ensures an unambiguous regiochemical course
of the Groebke–Blackburn MCRs. Simple mixing of all the reaction components
and an acid catalyst in a polar solvent can lead (as was observed for various 2-
aminoazines by us5 and others4e) to concomitant formation of the undesired
regioisomer. For a thorough insight into possible regiochemical outcomes of
the Groebke–Blackburn reaction, see: Mandair, G. S.; Light, M.; Russell, A.;
Hursthouse, M.; Bradley, M. Tetrahedron Lett. 2002, 43, 4267–4269.
we found to be inefficient under the standard reaction conditions
reported in the literature. These findings further extend the appli-
cability of trimethylchlorosilane as an efficient equimolar pro-
moter of isocyanide-based MCRs and reagent, which often
appears to be the only workable metal-free Lewis acid alternative
to traditional Brønsted acid catalysts. We are currently in the pro-
cess of extending these findings to other 2-aminoazole substrates.
The results of these studies will be reported in due course.
References and notes
12. Representative characterization data for the synthesized compounds: Compound
2d—grey solid, mp = 186 °C (decomp.); 1H NMR (300 MHz, DMSO-d6) d 7.85–
7.97 (m, 2H), 7.23–7.39 (m, 6H), 6.90–6.70 (m, 1H), 4.20 (br s, 1H), 3.56 (s, 2H),
3.40–3.49 (m, 4H), 2.52–2.57 (m, 4H), 1.10 (s, 9H); 13C NMR (75 Hz, DMSO-d6)
d 161.9 (d, JC–F = 260.3 Hz), 161.2, 158.9, 138.5, 133.9 (two lines), 129.5 (d,
JC–F = 6.8 Hz), 128.8, 128.3, 127.4, 121.5 (two lines), 112.0 (d, JC–F = 29.0 Hz),
110.5 (d, JC–F = 28.5 Hz), 95.4, 61.8, 54.9, 51.4, 48.1, 30.1; LCMS (M+H) 465;
Anal. Calcd for C25H29FN6S: C, 64.63; H, 6.29; N, 18.09. Found: C, 64.70; H, 6.33;
N, 18.17. Compound 2j—off-white solid, mp = 172–176 °C; 1H NMR (300 MHz,
DMSO-d6) d 7.95 (s, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.49–7.57 (m, 2H), 7.26–7.34
(m, 2H), 7.16–7.22 (m, 1H), 6.96 (d, J = 7.4 Hz, 1H), 4.17 (br s, 1H), 3.43–3.71 (br
m, 8H), 2.30 (s, 3H), 1.08 (s, 9H); 13C NMR (75 Hz, DMSO-d6) d 168.5, 163.1,
162.6 (d, JC–F = 245.1 Hz), 136.6, 136.2, 134.7, 131.9, 129.7 (d, JC–F = 8.6 Hz),
127.7, 126.7, 126.4, 122.9, 115.5 (d, JC–F = 21.7 Hz), 95.5, 54.8, 47.9, 30.2, 21.2;
LCMS (M+H) 493; Anal. Calcd for C26H29FN6OS: C, 63.39; H, 5.93; N, 17.06.
Found: C, 63.43; H, 6.00; N, 17.12. Compound 2l—grey solid, mp = 154–156 °C;
1H NMR (300 MHz, DMSO-d6) d 8.01–8.08 (m, 2H), 7.11–7.19 (m, 2H), 6.71 (br
t, J = 5.1 Hz, 1H), 4.42 (br d, J = 4.3 Hz, 1H), 3.77–3.85 (m, 1H), 3.32–3.50 (m,
10H), 3.24 (s, 3H), 3.15–3.23 (m, 2H), 1.42–1.73 (m, 8H); 13C NMR (75 Hz,
DMSO-d6) d 163.8, 160.4 (d, JC–F = 241.1 Hz), 157.2, 135.8, 131.8, 131.1, 128.5,
126.6 (d, JC–F = 7.4 Hz), 114.8 (d, JC–F = 21.1 Hz), 95.5, 71.3, 66.4, 57.9, 47.8, 42.5,
32.5, 23.4; LCMS (M+H) 488; Anal. Calcd for C23H30FN7O2S: C, 56.66; H, 6.20; N,
20.11. Found: C, 56.71; H, 6.25; N, 20.16.
1. Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661–663.
2. Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Tetrahedron Lett. 1998,
39, 3635–3638.
3. Bienaymé, H.; Bouzid, K. Angew. Chem., Int. Ed. 1998, 37, 2234–2237.
4. For recent examples of isocyanide-based reactions of 2-aminoazines and
-azoles see: (a) Rousseau, A. L.; Matlaba, P.; Parkinson, C. J. Tetrahedron Lett.
2007, 48, 4079–4082; (b) Shaabani, A.; Soleimani, E.; Maleki, A. Tetrahedron
Lett. 2006, 47, 3031–3034; (c) DiMauro, E. F.; Kennedy, J. M. J. Org. Chem. 2007,
72, 1013–1016; (d) Kercher, T.; Rao, C.; Bencsik, J. R.; Josey, J. A. J. Comb. Chem.
2007, 9, 1177–1187; (e) Carballares, S.; Cifuentes, M. M.; Stephenson, G. A.
Tetrahedron Lett. 2007, 48, 2041–2045; (f) Umkehrer, M.; Ross, G.; Jäger, N.;
Burdack, C.; Kolb, J.; Hu, H.; Alvim-Gaston, M.; Hulme, C. Tetrahedron Lett. 2007,
48, 2213–2216; (g) Shaabani, A.; Maleki, A.; Moghimi, R. J.; Soleimani, E. Chem.
Pharm. Bull. 2007, 55, 957–958; (h) Adib, M.; Mahdavi, M.; Noghani, M. A.;
Mirzaei, P. Tetrahedron Lett. 2007, 48, 7263–7265.
5. Parchinsky, V. Z.; Shuvalova, O.; Ushakova, O.; Kravchenko, D. V.; Krasavin, M.
Tetrahedron Lett. 2006, 47, 947–951.
6. Parchinsky, V. Z.; Koleda, V. V.; Shuvalova, O.; Kravchenko, D. V.; Krasavin, M.
Tetrahedron Lett. 2006, 47, 6891–6894.
7. Kysil, V.; Tkachenko, S.; Khvat, A.; Williams, C.; Tsirulnikov, S.; Churakova, M.;
Ivachtchenko, A. Tetrahedron Lett. 2007, 48, 6239–6244.
8. Krasavin, M.; Parchinsky, V. Synlett 2008, 645–648.