Communications
[5] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem. 2001,
113, 2446 – 2492; Angew. Chem. Int. Ed. 2001, 40, 2382 – 2492.
[6] Molecular Catenanes, Rotaxanes and Knots (Eds.: J.-P. Sauvage,
C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999.
spectrum of 1·2 showed that 60% of the complex 1·2 retained
its duplex structure, whereas the rest of 1·2 underwent
dissociation into 1 and 2 in [D6]DMSO (0.1 mm, 258C).[8] In
sharp contrast, (R)-4·6, a simple model for (R)-1·2, showed a
weak CD spectrum similar to that of (R)-4 in DMSO.[8] In fact,
it was shown by 1H NMR spectroscopic analysis that 4·6
dissociated into 4 and 6 in [D6]DMSO.[8] Consequently, the
complexation of 1·2 was more stable than that of the simpler
4·6.
In summary, we have successfully prepared the first
artificial single-handed double helices through formation of
salt bridges between chiral diamidines ((R)- and (S)-1) and
the achiral dicarboxylic acid 2. Both single-handed double
helices are stable in the solid state as well as in solution. The
modular strategy, we believe, can act as a new design rationale
for the formation of hydrogen-bond-driven double helices in
which the three-dimensional structures including the helix
sense are predictable.
[7] For recent examples of amidinium–carboxylate salt bridges, see
a) J. Otsuki, K. Iwasaki, Y. Nakano, M. Itou, Y. Araki, O. Ito,
Chem. Eur. J. 2004, 10, 3461 – 3466; b) G. Cooke, F. M. A.
Duclairoir, A. Kraft, C. Rosair, V. M. Rotello, Tetrahedron Lett.
2004, 45, 557 – 560; c) N. H. Damrauer, J. M. Hodgkiss, J.
Rosenthal, D. G. Nocera, J. Phys. Chem. B 2004, 108, 6315 –
6321; d) F. Corbellini, L. Di Constanzo, M. Cregs-Calama, S.
Geremia, D. N. Reinhoudt, J. Am. Chem. Soc. 2003, 125, 9946 –
9947; e) A. Kraft, L. Peters, H. R. Powell, Tetrahedron 2002, 58,
3499 – 3505; f) G. Wulff, R. Schꢂnfeld, Adv. Mater. 1998, 10, 957 –
959.
[8] See the Supporting Information for details of the synthesis,
structures, and characterization of compounds 1–7.
[9] A. Saednya, H. Hart, Synthesis 1996, 1455 – 1458.
[10] a) R. R. Hiatt, M.-J. Shaio, F. Georges, J. Org. Chem. 1979, 44,
3265 – 3266; b) R. Chinchilla, C. Nꢁjera, P. Sꢁnchez-Agullꢃ,
Tetrahedron: Asymmetry 1994, 5, 1393 – 1402.
[11] a) R. T. Boerꢄ, V. Klassen, G. Wolmershꢅuser, J. Chem. Soc.
Dalton Trans. 1998, 4147 – 4154; b) J. A. R. Schmidt, J. Arnold,
Chem. Commun. 1999, 2149 – 2150; c) J. A. R. Schmidt, J.
Arnold, J. Chem. Soc. Dalton Trans. 2002, 2890 – 2899.
Received: March 22, 2005
Published online: May 18, 2005
[12] Crystal data for (R)-1·2 (C141H140N4O9Si4): Mr = 2147.03, crystal
Keywords: chirality · helical structures · hydrogen bonds ·
salt bridges · supramolecular chemistry
.
dimensions 0.30 ꢆ 0.24 ꢆ 0.14 mm3, orthorhombic, space group
P212121, Z = 4, 1calcd = 1.132 gcmÀ3
,
m(CuKa) = 8.92 cmÀ1
,
F(000) = 4568, 2qmax = 136.48 were a = 13.6965(5), b =
22.7967(11), c = 40.3486(17) ꢀ, and V= 12598.2(9) ꢀ3. A total
of 124842 reflections were collected, of which 22862 reflections
were independent (Rint = 0.044). The structure was refined to
final R1 = 0.072 for 15968 data [I > 2s(I)] with 1430 parameters
and wR2 = 0.2360 for all data, GOF = 1.039, and residual
electron density max./min. = 0.49/À0.32 eꢀÀ3. CCDC-266647
contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from the
ac.uk/data_request/cif.
[1] For reviews on artificial helical polymers and oligomers, see
a) M. M. Green, J.-W. Park, T. Sato, A. Teramoto, S. Lifson,
R. L. B. Selinger, J. V. Selinger, Angew. Chem. 1999, 111, 3329 –
3345; Angew. Chem. Int. Ed. 1999, 38, 3138 – 3154; b) D. J. Hill,
M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev.
2001, 101, 3893 – 4011; c) T. Nakano, Y. Okamoto, Chem. Rev.
2001, 101, 4013 – 4038; d) J. J. L. M. Cornelissen, A. E. Rowan,
R. J. M. Nolte, N. A. J. M. Sommerdijk, Chem. Rev. 2001, 101,
4039 – 4070; e) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P.
Sijbesma, Chem. Rev. 2001, 101, 4071 – 4097; f) M. Fujiki,
Macromol. Rapid Commun. 2001, 22, 539 – 563; g) E. Yashima,
K. Maeda, T. Nishimura, Chem. Eur. J. 2004, 10, 42 – 51.
[2] For reviews on helicates, see a) J.-M. Lehn, Supramolecular
Chemistry, VCH, Weinheim, 1995; b) C. Piguet, G. Bernardi-
nelli, G. Hopfgartner, Chem. Rev. 1997, 97, 2005 – 2062; c) M.
Albrecht, Chem. Rev. 2001, 101, 3457 – 3497.
[3] a) J. Sꢁnchez-Quesada, C. Steel, P. Prados, J. de Mendoza, J. Am.
Chem. Soc. 1996, 118, 277 – 278; b) A. P. Bisson, C. A. Hunter,
Chem. Commun. 1996, 1723 – 1724; c) J. L. Sessler, R. Wang, J.
Am. Chem. Soc. 1996, 118, 9808 – 9809; d) B. Gong, Y. Yan, H.
Zeng, E. Skrzypczak-Jankunn, Y. W. Kim, J. Zhu, H. Ickes, J.
Am. Chem. Soc. 1999, 121, 5607 – 5608; e) B. J. B. Folmer, R. P.
Sijbesma, H. Koojiman, A. L. Spek, E. W. Meijer, J. Am. Chem.
Soc. 1999, 121, 9001 – 9007; f) P. S. Corbin, S. C. Zimmerman, J.
Am. Chem. Soc. 2000, 122, 3779 – 3780; g) E. A. Archer, N. T.
Goldberg, V. Lynch, M. J. Krische, J. Am. Chem. Soc. 2000, 122,
5006 – 5007; h) J. S. Nowick, D. M. Chung, K. Maitra, S. Maitra,
K. D. Stigers, Y. Sun, J. Am. Chem. Soc. 2000, 122, 7654 – 7661;
i) G. Schmuck, W. Wienand, J. Am. Chem. Soc. 2003, 125, 452 –
459; j) T. Moriuchi, T. Tamura, T. Hirao, J. Am. Chem. Soc. 2004,
126, 9356 – 9357.
[4] a) V. Berl, I. Huc, R. G. Khoury, M. J. Krische, J.-M. Lehn,
Nature 2000, 407, 720 – 723; b) V. Berl, I. Huc, R. G. Khoury, J.-
M. Lehn, Chem. Eur. J. 2001, 7, 2810 – 2820; c) I. Huc, Eur. J.
Org. Chem. 2004, 17 – 29; the two strands of poly(methyl
methacrylate) were reported to form a double helix in the
solid state through van der Waals interactions; d) H. Kusanagi,
Polym. J. 1996, 28, 708 – 711.
3870
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3867 –3870