First author et al.
Report
layer was extracted with ethyl acetate (3 × 50 mL). The combined
organic layers were dried over sodium sulfate, filtered and
concentrated. The product 3 was obtained by flash column
chromatography on silica gel (petroleum ether/ethyl acetate =
20:1).
2011, 1, 446−454.
[8] Michel, N. W. M.; Jeanneret, A. D. M.; Kim, H.; Rousseaux, S. A. L.
Nickel-Catalyzed Cyanation of Benzylic and Allylic Pivalate Esters. J.
Org. Chem. 2018, 83, 11860−11872.
[9] (a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S.
S.; Liu, G. Enantioselective Cyanation of Benzylic C−H Bonds via
Copper-Catalyzed Radical Relay. Science. 2016, 353, 1014−1018; (b)
Wang, F.; Wang, D; Wan, X.; Wu, L.; Chen, P.; Liu, G. Enantioselective
Copper-Catalyzed Intermolecular Cyanotrifluoromethylation of
Alkenes via Radical Process. J. Am. Chem. Soc. 2016, 138,
15547−15550; (c) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G.
Enantioselective Copper-Catalyzed Intermolecular Amino- and
Azidocyanation of Alkenes in a Radical Process. Angew. Chem. Int. Ed.
2017, 56, 2054−2058; (d) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G.
Enantioselective Decarboxylative Cyanation Employing Cooperative
Photoredox Catalysis and Copper Catalysis. J. Am. Chem. Soc. 2017,
139, 15632−15635; (e) Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed
Radical Relay for Asymmetric Radical Transformations. Acc. Chem.
Res. 2018, 51, 2036−2046; (f) Zhang, W.; Wu, L.; Chen, P.; Liu, G.
Enantioselective Arylation of Benzylic C-H Bonds by
Copper-Catalyzed Radical Relay. Angew. Chem. Int. Ed. 2019, 58,
6425–6429; (g) Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G.
Proton-Coupled Electron Transfer Enables Tandem Radical Relay for
Asymmetric Copper-Catalyzed Phosphinoylcyanation of Styrenes.
Org. Lett. 2019, 21, 5015–5020; (h) Cheng, Z.; Chen, P.; Liu, G.
Enantioselective Cyanation of Remote C-H Bonds via Cooperative
Photoredox Catalysis and Copper Catalysis. Acta Chim. Sinica 2019,
77, 856–860; (i) Wu, L.; Wang, L.; Chen, P.; Guo, Y.-L.; Liu, G.
Enantioselective Copper-Catalyzed Radical Ring-Opening Cyanation
of Cyclopropanols and Cyclopropanone Acetals. Adv. Synth. Catal.
2020, 362, 2189-2194; for the elegant work from other groups, see:
(j) Sha, W.; Deng, L.; Ni, S.; Mei, H.; Han, J.; Pan, Y. Merging
Photoredox and Copper Catalysis: Enantioselective Radical
Cyanoalkylation of Styrenes. ACS Catal. 2018, 8, 7489−7494; (k)
Zhang, Z.-Q.; Meng, X.-Y.; Sheng, J.; Lan, Q.; Wang, X.-S.
Enantioselective Copper-Catalyzed 1,5-Cyanotrifluoromethylation of
Vinylcyclopropanes. Org. Lett. 2019, 21, 8256−8260; (l) Chen, J.,
Wang, P.-Z., Lu, B., Liang, D., Yu, X.-Y., Xiao, W.-J.; Chen, J.-R.
Enantioselective Radical Ring-Opening Cyanation of Oxime Esters by
Dual Photoredox and Copper Catalysis. Org. Lett. 2019, 21,
9763–9768; (m) Yang, S.; Wang, L.; Zhang, H.; Liu, C.; Zhang, L.; Wang,
X.; Zhang, G.; Li, Y.; Zhang, Q. Copper-Catalyzed Asymmetric
Aminocyanation of Arylcyclopropanes for Synthesis of γ‑Amino
Nitriles. ACS Catal. 2019, 9, 716−721.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
We are grateful to the National Science Foundation of China (No.
21901080, 21822103, 21820102003 and 91956201), the Program
of Introducing Talents of Discipline to Universities of China (111
Program, B17019), the Natural Science Foundation of Hubei
Province (2017AHB047) and the International Joint Research
Center for Intelligent Biosensing Technology and Health for
support of this research.
References
[1] (a) Rappoport, Z.; Patai, S. The Chemistry of the Cyano Group. Wiley,
London, 1970; (b) Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Addition
and Substitution Reactions of Nitrile-Stabilized Carbanions. Org.
React. 1984, 31, 1–364; (c) Wang, M.-X. Enantioselective
Biotransformations of Nitriles in Organic Synthesis. Acc. Chem. Res.
2015, 48, 602−611.
[2] (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C.
Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile
Pharmacophore. J. Med. Chem. 2010, 53, 7902–7917; (b) Arafa, W. A.
A.; Hussein, M. F. Design, Sonosynthesis, Quantum-Chemical
Calculations, and Evaluation of New Mono- and Bis-pyridine
Dicarbonitriles as Antiproliferative Agents. Chin. J. Chem. 2020, 38,
501–508.
[3] Nabholtz, J. M.; Buzdar, A.; Pollak, M.; Harwin, W.; Burton, G.;
Mangalik, A.; Steinberg, M.; Webster, A.; von Euler, M. Anastrozole Is
Superior to Tamoxifen as First-Line Therapy for Advanced Breast
Cancer in Postmenopausal Women: Results of a North American
Multicenter Randomized Trial J. Clin. Oncol. 2000, 18, 3758–3767.
[4] Brogden, R. N.; Benfield, P.
A Review of Its Pharmacological
Properties and Therapeutic Use in Coronary Artery Disease. Drugs
1996, 51, 792–819.
[10] (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Exploration of
Visible-Light Photocatalysis in Heterocycle Synthesis and
Functionalization: Reaction Design and Beyond. Acc. Chem. Res. 2016,
49, 1911–1923; (b) Ding, W.; Lu, L.-Q.; Zhou, Q.-Q.; Wei, Y.; Chen,
J.-R.; Xiao, W.-J. Bifunctional Photocatalysts for Enantioselective
Aerobic Oxidation of β-Ketoesters. J. Am. Chem. Soc. 2017, 139,
63–66; (c) Jiang, X.; Zhang, M.-M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J.
Deaminative (Carbonylative) Alkyl-Heck-Type Reactions Enabled by
Photocatalytic C-N Bond Activation. Angew. Chem. Int. Ed. 2019, 58,
2402–2406; (d) Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou,
Q.-Q.; Wei Y.; Lan, Y.; Xiao, W.-J. Asymmetric Propargylic Radical
Cyanation Enabled by Dual Organophotoredox and Copper Catalysis.
J. Am. Chem. Soc. 2019, 141, 6167–6172; (e) Zhang, K.; Lu, L.-Q.; Jia,
Y.; Wang, Y.; Lu, F.-D.; Pan, F.-F.; Xiao, W.-J. Exploration of a Chiral
Cobalt Catalyst for Visible-Light-Induced Enantioselective Radical
Conjugate Addition. Angew. Chem. Int. Ed. 2019, 58, 13375–13379.
[11] For selected reviews on synergistic photoredox and asymmetric
organometallic catalysis, see: (a) Brimioulle, R.; Lenhart, D.; Maturi,
M. M.; & Bach, T. Enantioselective Catalysis of Photochemical
Reactions. Angew. Chem. Int. Ed. 2015, 54, 3872-3890; (b) Wang, C.;
Lu, Z. Catalytic Enantioselective Organic Transformations via Visible
[5] (a) Miller, J. S.; Manson, J. L. Designer Magnets Containing Cyanides
and Nitriles. Acc. Chem. Res. 2001, 34, 563–570; (b) Wang, T.; Jiao, N.
Direct Approaches to Nitriles via Highly Efficient Nitrogenation
Strategy through C−H or C−C Bond Cleavage. Acc. Chem. Res. 2014,
47, 1137–1145.
[6] (a) Mitsunobu, O.; Yamada, M. Preparation of Esters of Carboxylic
and Phosphoric Acid via Quaternary Phosphonium Salts. Bull. Chem.
Soc. Jpn. 1967, 40, 2380−2382.
[7] (a) Chen, G.; Wang, Z.; Wu, J.; Ding, K. L. Facile Preparation of α-Aryl
Nitriles by Direct Cyanation of Alcohols with TMSCN Under the
Catalysis of InX3. Org. Lett. 2008, 10, 4573–4576; (b) Rajagopal, G.;
Kim, S. S. Synthesis of α-Aryl Nitriles through B(C6F5)3-Catalyzed
Direct Cyanation of α-Aryl Alcohols and Thiols. Tetrahedron 2009, 65,
4351–4355; (c) Theerthagiri, P.; Lalitha, A. Zn(OTf)2-catalyzed direct
cyanation of benzylic alcohols—a novel synthesis of α-aryl nitriles.
Tetrahedron Lett. 2012, 53, 5535–5538; (d) Fan, X.; Guo, K.; Guan,
Y.-H.; Fu, L.-A.; Cui, X.-M.; Lv, H.; Zhu, H.-B. Efficient Assembly of α
-Aryl and α-Vinyl Nitriles via Iron-Catalyzed Ether Bond Activation.
Tetrahedron Lett. 2014, 55, 1068−1071; (e) Wang, J.; Masui, Y.;
Onaka, M. Direct Synthesis of Nitriles from Alcohols with Trialkylsilyl
Cyanide Using Brønsted Acid Montmorillonite Catalysts. ACS Catal.
4
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2020, 38, XXX-XXX
This article is protected by copyright. All rights reserved.