10.1002/chem.201801418
Chemistry - A European Journal
COMMUNICATION
[6]
(a) S. Uzan, D. Baris, M. Colak, H. Aydin, H. Hosgoren, Tetrahedron,
2016, 72, 7517-7525. (b) B. O. Okesola, V. M. P. Vieira, D. J. Cornwell,
N. K. Whitelaw, D. K. Smith, Soft Matter 2015, 11, 4768-4787. (c) T
Cardolaccia, Y. Li, K. S. Schanze, J. Am. Chem. Soc. 2008, 130, 2535-
2545.
In light of the facts that; a) the optimal ratio for gelation was
found to be 1:1, i.e. excess of 2b was observed by 1H NMR and
excess of 1 simply precipitated; b) the organogels are formed via
shape-based complementarity, i. e. only when pentagonal are
facing pentagonal structures; c) the 1:2b pair effectively forms
organogels in the presence of 4, 5 and even 3, it is plausible to
assume that the self-assembly between 1 and 2 occurs via
alternate organization of these two components as described in
Figure 6. Note that the formation of 1D nanotubes of
[7]
[8]
A. R. Hirst, D. K. Smith, Chem. Eur. J. 2005, 11, 5496-5508.
Selected examples: (a) W. Miao, L. Qin, D. Yang, X. Jin, M. Liu, Chem.
Eur. J. 2015, 21, 1064-1072. (b) Y. He, M. Xu, R. Gao, X. Li, F. Li, X.
Wu, D. Xu, H. Zeng, L. Yuan, Angew. Chem. Int, Ed. 2014, 53, 11834-
11839. (c) W. Edwards, D. K. Smith, J. Am. Chem. Soc. 2013, 135,
5911-5920. (d) Y. Zhou, M. Xu, T. Yi, S. Xiao, Z. Zhou, F. Li, C. Huang,
Langmuir 2007, 23, 202-208. (e) S. Yagai, M. Higashi, T. Karatsu, A.
Kitamura, Chem. Mater. 2004, 16, 3582-3585. (f) A. R. Hirst, D. K.
Smith, M. C. Feiters, H. P. M. Geurst, A. C. Wright, J. Am. Chem. Soc.
2003, 125, 9010-9011.
pillar[5]arenes was recently suggested.[24]
Based on the
significant difference in the pKa values of 1 and 2, one can
assume, that their assembly to supramolecular nanotubes
occurs via multiple charge-assisted hydrogen bonds,[25] which
overcome the competition of the surrounding polar protic/aprotic
solvent molecules. Note that addition of solid NaOH disrupts to
formed supramolecular gels. The formed 1D structure may, then,
aggregate to fibers via both charge-assisted hydrogen bonds
and - interactions that eventually lead to the entangled
structures.
In conclusion, we found, by rational planning, a new family
of two-component, supramolecular organogels based on
structurally complementary pillararenes. These supramolecular
organogels, presumably consisting of hollow nano-tubular
structures, obtained by simple mixing (no heating required), in
different organic solvents, were found to be thixotropic and are
characterized by high stability, low MGC and high Tgel values,
which in some cases exceed the boiling point of the embedded
solvent. Importantly, we demonstrated that the different
characteristics of these organogels are tunable. By performing
competition experiments, and following them macroscopically
and by 1H NMR, we could demonstrate the importance of
multivalency and structural complementarity in the formation of
such organogels. A plausible mechanism for the formation of
these supramolecular organogels is also suggested.
[9]
P. Mukhopadhyay, N. Fujita, A. Takada, T. Kishida, M. Shirakawa, S.
Shinkai, Angew. Chem. Int. Ed. 2010, 49, 6338-6342.
[10] (a) S. Bhatia, L. C. Camacho, R. Haag, J. Am. Chem. Soc. 2016, 138,
8654-8566. (b) A. Barnard, D. K. Smith, Angew. Chem. In. Ed. 2012, 51,
6572-6581.
[11] (a) D. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Angew. Chem.
Int. Ed. 2001, 40, 988-1011. (b) L. S. Shimizu, S. R. Salpage, A. A.
Korous, Acc. Chem. Res. 2014, 47, 2116-2127. (c) A. Nitti, A. Pacini, D.
Pasini, Nanomaterials 2017, 7, 167.
[12] (a) L. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469-472. (b) L.
Avram, Y. Cohen, J. Am. Chem. Soc.2002, 124, 15148-15149. (c) L.
Avram, Y. Cohen, J. Rebek, Chem. Commun. 2011, 47, 5368-5375. (d)
J. Rebek, "hydrogen-bonded capsules: molecular behavior in small
spaces" World Scientific Publishing, Singapore, 2015.
[13] (a) E. Krieg, M. M. C. Bastings, P. Besenius, B. Rybtchinski, Chem.
Rev. 2016, 116, 2014-2477. (b) S. Dong, B. Zheng, F. Wang, F. Huang,
Acc. Chem. Res. 2014, 47, 1982-1994.
[14] (a) T. Ogoshi, S. Kanai, S. Fujinami, T.-A. Yamagishi, Y. Nakamoto, J.
Am. Chem. Soc. 2008, 130, 5022-5023. For a few recent reviews on
pillararenes see: (b) T. Kalkuta, T.-A. Yamagishi, T. Ogoshi, Chem.
Comm. 2017, 53, 5250-5266. (c) C. W. Sathiyajith, R. R. Shaikh, Q.
Han, Y. Zhang, K. Meguellati, Y.-W. Yang, Chem. Comm. 2017, 53,
677-696. (d) T. Ogoshi, Yamagishi, T. -A. Y. Nakamoto, Chem. Rev.
2016, 116, 7937-8002. (e) C. Li, Chem. Commun. 2014, 50, 12420-
12433. (f) N. l. Strutt, H. Zhang, S. T. Schneebeli, J. F. Stoddart, Acc.
Chem. Res. 2014, 47, 2631-2642.(g) T. Ogoshi, T. -A. Yamagishi,
Chem. Commun. 2014, 50, 4776-4787. (h) J.-F. Chen, Q. Lin, Y.-M.
Zhang, H. Yao, T.-B. Wei, Chem. Comm. 2017, 53, 13296-13311. (i) K.
Yang, Y. Pei, J. Wen, Z. Pei, Chem. Commun. 2016, 52, 9316-9326.
[15] (a) G.C. Yu, J. Zhou, J. Shen, G. Tang, F. Huang, Chem. Sci. 2016, 7,
4073-4078. (b) K. C. Jie, M. Liu, Y.J. Zhou, M. A. Little, S. Bonakala, S.
Y. Chong, A. Stephenson, L. Chen, F. Huang, A. I. Cooper, J. Am.
Chem. Soc. 2017, 139, 2908–2911. (c) T. Ogoshi, R. Sueto, K.
Yoshikoshi, K. Yasuhara, T.-A. Yamagishi, J. Am. Chem. Soc. 2016,
138, 8064-8067. (d) T. Ogoshi, H. Kayama, D. Yamafuji, T. Aoki, T.-A.
Yamagishi, Chem. Sci. 2012, 3, 3221--3226.
Keywords: organogels • pillararenes • self-assembly •
thixotropy• multivalency
[1]
Selected recent reviews: (a) S. Cherumukkil, B. Vedhanarayanan, G.
Das, V. K. Praveen, A. Ajayaghosh, Bull. Chem. Soc. Jpn. 2018, 91,
100-120. (b) E. R. Draper, D. J. Adams, Chem. 2017, 3, 390-410. (c) N.
Singh, M. Kumar, J. F. Miravet, R. V. Ulijn, B. Escuder, Chem. Eur. J.
2017, 23, 981-993. (d) S. Manchineella, T. Govindaraju,
ChemPlusChem 2017, 82, 88-106. (e) K. Hanabusa, M. Suzuki, Bull.
Chem. Soc. Jpn. 2016, 89, 174-182. (f) J. Raeburn, D. J. Adams, Chem.
Commun. 2015, 51, 5170-5180. (g) R. G. Weiss, J. Am. Chem. Soc.
2014, 136, 7519-7530. (h) L. E. Buerklea, S. J. Rowan, Chem. Soc.
Rev. 2012, 41, 6089-6102. (i) J. W. Steed, Chem. Commun. 2011, 47,
1379-1383 (j) P. Dastidar, Chem. Soc. Rev. 2008, 37, 2699-2715. (k) N.
M. Sangeetha, U. Maitra, Chem. Soc. Rev. 2005, 34, 821-836.
(a) K. K. Kartha, S. S. Babu, S. Srinivasan, A. Ajayaghosh, J. Am.
Chem. Soc. 2012, 134, 4834-4841, (b) A. Kishimura, T. Yamashita, T.
Aida, J. Am. Chem. Soc. 2005, 127, 179-183.
[16] (a) R. Joseph, A. Naugolny, M. Feldman, I. M. Herzog, M. Fridman, Y.
Cohen, J. Am. Chem. Soc. 2016, 138, 754–757. (b) R. Joseph, D.
Kaizerman, I. M. Herzog, M. Hadar, M. Feldman, M. Fridman, Y. Cohen,
Chem. Commun. 2016, 52, 10656-10659. (c) T. Adiri, D. Marciano, Y.
Cohen, Chem. Commun. 2013, 49, 7082-7084.
[2]
[3]
[17] (a) M. Ni, N. Zhang, W. Xia, X. Wu. C. Yao, X. Liu, X.-Y. Hu, C. Lin, L.
Wang, J. Am. Chem. Soc. 2016, 138, 6643-6649. (b) L. Gao, B. Zheng,
Y. Yao, F. Huang, Soft Matter 2013, 9, 7314-7319. (c) Y. Yao, Y. Sun,
H. Yu, W. Chen, H. Dai, Y. Shi, Dalton. Trans. 2017, 46, 16802-16806.
(d) W. Xia, M. Ni, C. Yao, X. Wang, D. Chen, C. Lin, X.-Y. Hu, L. Wang,
Macromolecules, 2015, 48, 4403-4409. (e) Q. Lin, P.-P. Mao, Y.-Q. Fan,
L. Liu, J. Liu, Y.-M. Zhang, , H. Yao, T.-B. Wei, Soft Matter 2017, 13,
7085-7089.
(a) A. Vintiloiu, J.-C. Leroux, J. Control. Relaese 2008, 125, 179-192.
(b) S. S. Sagiri, B. Behera, R. R. Rafanan, C. Bhattacharya, K. Pal, I
Banerjee, D. S. Rousseau, Soft Matter. 2014, 12, 47-72.
[4]
[5]
K. J. Skilling, F. Citossi, T. D. Bradshaw, M. Ashford, B. Kellam, M.
Marlow, Soft Matter. 2014, 12, 237-256.
H. Yu, K. Shi, D. Liu, Q. Huang, Food Chemistry 2012, 131, 48-54.
[18] (a) Z.-Y. Li, Y. Zhang, C.-W. Zhang, L.-J. Chen, C. Wang, H. Tan. Y. Yu,
X. Li, H.-B. Yang, J. Am. Chem. Soc. 2014, 136, 8577-8589. (b) X.
This article is protected by copyright. All rights reserved.