SCHEME 1. Synthesis of Lactams 4
A Novel Synthesis of 1-Nosyl
3,3-Dichloro-ꢀ-Lactams and Derivatives
Francisco Tato,* Vincent Reboul,* and Patrick Metzner
Laboratoire de Chimie Mole´culaire et Thio-organique,
ENSICAEN, UniVersite´ de Caen Basse-Normandie, CNRS, 6,
BouleVard du Mare´chal Juin, 14050, Caen, France
tionalization5 and their biological activities, especially as
antibacterial agents.6
ReceiVed June 30, 2008
Generally, the Staudinger reaction uses ketenes bearing alkyl
or aryl groups. Surprisingly, the use of dichloroketene7 as the
starting material has received much less attention, and its
reactivity has been studied only for N-alkyl8 or N-aryl imines.9
The latter method provided 3,3-dichloroazetidin-2-one, which
creates room for additional functionalization at the site bearing
the halogen substituents.10 Harmoniously with our continuing
interest in the reactivity of dichloroketene,11 this finding has
led us to examine the Staudinger reaction with imines possessing
an electron-withdrawing group, which thereafter could be easily
removed.
The preparation of dichloroketene, which is unstable and
polymerizes readily,12 has been performed by a dehydrohalo-
genation reaction of dichloroacetyl chloride (2 equiv) in the
presence of a Lewis base (2 equiv). Initially, various ben-
zylidenimines with different electron-withdrawing groups at-
tached to the nitrogen atom were investigated (Scheme 1 and
Table 1).
We report herein an efficient and simple route to synthesize
1-nosyl 3,3-dichloro-ꢀ-lactams using a Staudinger reaction
between N-nosyl imines and dichloroketene. The resulting
dichloroazetidines were opened to afford highly functional-
ized building blocks.
Although phosphinoylimines 1 and tosylimines 2 did not react
as expected (Table 1, entries 1 and 2),13 we found that the use
(5) For leading references on the chemistry of ꢀ-lactams, see: (a) Palomo,
C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 1813. (b) Deshmukh,
A. R. A. S.; Bhawal, B. M.; Krishnaswamy, D.; Govande, V. V.; Shinkre, B. A.;
Jayanthi, A. Curr. Med. Chem. 2004, 11, 1889. (c) Alcaide, B.; Almendros, P.
Curr. Med. Chem. 2004, 11, 1921. (d) Alcaide, B.; Almendros, P.; Aragoncillo,
C. Chem. ReV. 2007, 4437.
(6) For leading references on the biological activity of ꢀ-lactams, see: (a)
Chemistry and Biology of ꢀ-Lactam Antibiotics; Morin, R. B.; Gorman, M., Eds.;
Academic Press: New York, 1982; Vols. 1-3. (b) Burnett, D. A. Curr. Med.
Chem. 2004, 11, 1873. (c) Buynak, J. D. Curr. Med. Chem. 2004, 11, 1951. (d)
Niccolai, D.; Tarsi, L.; Thomas, R. J. Chem. Commun. 1997, 2333.
(7) Recent uses of dichloroketene: (a) Brocksom, T. J.; Coelho, F.; Depres,
J.-P.; Greene, A. E.; Freire de Lima, M. E.; Hamelin, O.; Hartmann, B.;
Kanazawa, A. M.; Wang, Y. J. Am. Chem. Soc. 2002, 124, 15313. (b) Roche,
C.; Kadlecikova, K.; Veyron, A.; Delair, P.; Philouze, C.; Greene, A. E.; Flot,
D.; Burghammer, M. J. Org. Chem. 2005, 70, 8352. (c) Padwa, A.; Nara, S.;
Wang, Q. J. Org. Chem. 2005, 70, 8538. (d) Wang, Q.; Nara, S.; Padwa, A.
Org. Lett. 2005, 7, 839. (e) Marino, J. P.; Zou, N. Org. Lett. 2005, 7, 1915. (f)
Ceccon, J.; Greene, A. E.; Poisson, J.-F. Org. Lett. 2006, 8, 4739. (g) Ussing,
B. R.; Hang, C.; Singleton, D. A. J. Am. Chem. Soc. 2006, 128, 7594. (h) Tidwell,
T. T. Sci. Synth. 2006, 23, 101.
(8) (a) Van Brabant, W.; Dejaegher, Y.; De Kimpe, N. Pure Appl. Chem.
2005, 77, 2061. (b) Dejaegher, Y.; Mangelinckx, S.; De Kimpe, N. J. Org. Chem.
2002, 67, 2075.
(9) Khajavi, M. S.; Sefidkon, F.; Hosseini, S. S. S. J. Chem. Res., Synop.
1998, 11, 724.
(10) Dejaegher, Y.; Denolf, B.; Stevens, C. V.; De Kimpe, N. Synthesis 2005,
193.
(11) Blot, V.; Reboul, V.; Metzner, P. Eur. J. Org. Chem. 2006, 1934.
(12) (a) Brady, W. T.; Liddell, H. G.; Vaughn, W. L. J. Org. Chem. 1966,
31, 626. (b) Brady, W. T.; Waters, O. H. J. Org. Chem. 1967, 32, 3703.
(13) The dehalogenation reaction of trichloroacetyl chloride in the presence
of the Zn-Cu amalgam did not afford satisfactory results due to the decomposi-
tion of starting imines 1-3.
The reaction between imines and ketenes to form the
corresponding ꢀ-lactams1 through a formal [2 + 2]-cycloaddi-
tion was discovered by Staudinger2 over a century ago. This
method represents one of the most effective routes for preparing
these compounds,3 and recently, catalytic asymmetric versions
have been developed.4 In addition, the chemistry of ꢀ-lactams
has received significant attention due to their selective func-
(1) (a) Ternansky, R. J.; Jr. In The Organic Chemistry of ꢀ-Lactams; Georg,
G. I., Ed.; Verlag Chemie: New York, 1993; p 257. (b) Singh, G. S. Tetrahedron
2003, 59, 7631.
(2) Staudinger, H. Justus Liebigs. Ann. Chem. 1907, 356, 51.
(3) (a) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Curr. Med.
Chem. 2004, 11, 1837. (b) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide,
M. Eur. J. Org. Chem. 1999, 3223. (c) Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem.
Soc. 2006, 128, 6060.
(4) (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., III.;
Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831. (b) Taggi, A. E.; Hafez, A. M.;
Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc. 2002, 124,
6626. (c) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578. (d)
Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578. (e) Fu, G. C. Acc.
Chem. Res. 2004, 37, 542. (f) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka,
T. Acc. Chem. Res. 2004, 37, 592. (g) France, S.; Shah, M. H.; Weatherwax,
A.; Wack, H.; Roth, J. P.; Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206. (h)
Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc.
2005, 127, 11586. (i) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org.
Lett. 2008, 10, 277. (j) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith,
A. D. Org. Biomol. Chem. 2008, 6, 1108.
10.1021/jo8014193 CCC: $40.75
Published on Web 09/09/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 7837–7840 7837