A R T I C L E S
Clayden et al.
helicity in solution in systems where conformational interconversion
is rapid poses a significant challenge.17 In some cases, these
foldamers have been shown to adopt absolute helicity dependent
only on stereochemistry present at one terminus.18-21 An estimation
of the fidelity with which such oligomers respond, in solution, to
a terminal chiral influence is given by circular dichroism studies,20-22
though generally only qualitative information about helicity is
provided. Remotely stereoselective reactions23 imply a degree of
conformational control,12,24 and the “chain length dependence
test”25 can give evidence of conformationally ordered structures.
If diastereoisomeric conformers interconvert slowly on the NMR
time scale direct measurement of conformational ratios may be
possible.19,21 However, when helix inversion is fast on the NMR
time scale, it becomes difficult to establish (a) the extent to which
the solution state conformation of the oligomer is helical and (b)
the level of control obtained over the absolute helicity of the
oligomer. (Absolute helicity (the adoption of specifically M or P
helicity) most commonly results from chiral monomers which result
in handed helices.16 Cooperative effects mean that the “degree”
of chirality required to provide a high level of helical control can
be very smallseven H vs D.26 Likewise, not every monomer needs
to be chiral for induction to be effectivesthe principle of “sergeants
and soldiers” means that achiral monomers follow suit if chiral
monomers are dispersed among them.27)
Figure 1. Fast and slow interconversion of enantiomeric and diastereo-
isomeric helices.
In this paper we propose that, even for oligomers undergoing
fast conformational change, NMR methods can still provide a
qualitative, empirical indication of the degree to which a molecule
adopts a helical conformation in solution. Consider two enantio-
meric interconverting helices carrying a pair of terminal protons
Ha and Hb (Figure 1a) The protons are rendered diastereotopic by
virtue of the chirality of the helix: slow (i.e., k , π∆ν/ꢀ2, where
∆ν is the chemical shift difference between Ha and Hb)28 inter-
conversion between the M and P helices will give rise to
anisochronous signals (an AB system), as has been observed for
example by Huc29 and others. Fast interconversion (i.e., k . π∆ν/
ꢀ2) will however average the environments of Ha and Hb and these
protons will appear isochronous (a 2H singlet).
Attaching a chiral controlling element X* to the terminus
of the helix generates a diastereoisomeric pair of structures
(Figure 1b). Now, even if the helices undergo fast intercon-
version, Ha and Hb remain diastereotopic by virtue of the
presence of X*. However, the apparent diastereotopicitys
the spectroscopically observed anisochronicitysof Ha and Hb
due to the direct effect of X* will decrease rapidly as the
oligomeric chain is lengthened, and direct interaction between
X* and the geminal pair Ha, Hb is lost. Nonetheless, if X* is
able to bias the equilibrium such that one of the diastereo-
isomeric helices M or P predominates, then Ha and Hb remain
in diastereomeric environments due to the local influence of
the unequally populated helix conformations: they remain
anisochronous and will still appear as an AB system, in
principle irrespective of the distance from X*, and irrespec-
tive of the rate of helix inversion. In practice of course
anisochronicity will be under the control of a range of other
factors,30 but it can safely be assumed that persistence of
apparent diastereotopicity significantly beyond the maximum
range usually observed in acyclic systems (>8 bond lengths,
say31) indicates a degree of helicity in the solution state
conformation. If however, as the helix lengthens, the
conformation becomes disordered such that X* can no longer
control the local chiral environment of Ha and Hb via the
helix, then the signal arising from the diastereotopic pair of
protons will collapse to a 2H singlet. The chemical shift
difference ∆ν between Ha and Hb may thus be useful as a
chain-length dependent25 empirical measure of the distance
over which the helicity of an oligomer persists in solution.
OligoureassPreliminary Study. We chose to apply this
proposed technique to a series of oligomeric ureas of structures
(12) Clayden, J.; Lund, A.; Vallverdu´, L.; Helliwell, M. Nature (London)
2004, 431, 966.
(13) (a) Hecht, S.; Huc, I. Foldamers; Wiley-VCH: Weinheim, 2007. (b)
Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. ReV. 2001, 101, 3893.
(14) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
(15) Huc, I. Eur. J. Org. Chem. 2004, 17.
(16) (a) Nakano, T.; Okamoto, Y. Chem. ReV. 2001, 101, 4013. (b)
Cornelissen, J. H. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk,
N. A. J. M. Chem. ReV. 2001, 101, 4039.
(17) Dolain, C; Gre´lard, A.; Laguerre, M.; Jiang, H.; Maurizot, V.; Huc, I.
Chem.-Eur. J. 2005, 11, 6135.
(18) (a) Akazome, M.; Ishii, Y.; Nireki, T.; Ogura, K. Tetrahedron Lett.
2008, 49, 4430. (b) Maeda, K.; Yashima, E. Top. Curr. Chem. 2006,
265, 47. (c) Yahima, E; Maeda, K.; Nishimura, T. Chem.-Eur. J.
2004, 10, 43. (d) Jiang, H.; Dolain, C.; Le´ger, J.-M.; Gornitzka, H.;
Huc, I. J. Am. Chem. Soc. 2004, 125, 1034. (e) Mizutami, T.; Sakai,
N.; Yagi, S.; Takagishi, T.; Kitagawa, S.; Ogoshi, H. J. Am. Chem.
Soc. 2000, 122, 748. (f) Pengo, B.; Formaggio, F.; Crisma, M.;
Toniolo, C.; Bonora, G. M.; Broxterman, Q. B.; Kamphuis, J.; Saviano,
M.; Iacovino, R.; Rossi, F.; Benedetti, E. J. Chem. Soc., Perkin Trans.
2 1998, 1651. (g) Benedetti, E.; Saviano, M.; Iacovino, R.; Pedone,
C.; Santini, A.; Crisma, M.; Formaggio, F.; Toniolo, C.; Broxterman,
Q. R.; Kamphuis, J. Biopolymers 1998, 433.
(19) Hu, H.-Y.; Xiang, J.-F.; Yang, Y.; Chen, C.-F. Org. Lett. 2008, 10,
1275.
(20) Pijper, D.; Feringa, B. L. Angew. Chem., Int. Ed. 2007, 46, 3693.
(21) Dolain, C.; Jiang, H.; Le´ger, J.-M.; Guionneau, P.; Huc, I. J. Am. Chem.
Soc. 2005, 127, 12943.
(22) (a) Miyagawa, T.; Furuko, A.; Maeda, K.; Katagiri, H.; Furusho, Y.;
Yashima, E. J. Am. Chem. Soc. 2005, 127, 5018. (b) Mazaleyrat, J.-
P.; Wright, K.; Gaucher, A.; Toulemonde, N.; Wakselman, M.; Oancea,
S.; Peggion, C.; Formaggio, F.; Setnicka, V.; Keiderling, T. A.;
Toniolo, C. J. Am. Chem. Soc. 2004, 126, 12874. (c) Inai, Y.; Komori,
H. Biomacromolecules 2004, 5, 1231. (d) Ousaka, N.; Inai, Y.; Okabe,
T. Biopolymers 2006, 83, 337. (e) Komori, H.; Inai, Y. J. Org. Chem.
2007, 72, 4012.
(23) (a) Mikami, K.; Shimizu, M.; Zhang, H.-C.; Maryanoff, B. E.
Tetrahedron 2001, 57, 2917. (b) Mitchell, H. J.; Nelson, A.; Warren,
S. J. Chem. Soc., Perkin Trans. 1 1999, 1899.
(24) (a) Noe, C. R.; Knollmu¨ller, M.; Ettmayer, P. Angew. Chem., Int. Ed.
1988, 27, 1379. (b) Jianfeng, Y.; RajanBabu, T. V.; Parquette, J. R.
J. Am. Chem. Soc. 2008, 130, 7845.
(25) Stone, M. T.; Heemstra, J. M.; Moore, J. S. Acc. Chem. Res. 2006,
39, 11.
(28) Sandstro¨m, J. Dynamic NMR Spectroscopy; Academic Press: London,
1982.
(26) Green, M. M.; Reola, C.; Mun˜oz, B.; Reidy, M. P. J. Am. Chem. Soc.
1988, 110, 4063.
(29) Maurizot, V.; Dolain, C.; Leydet, Y.; Le´ger, J.-M.; Guionneau, P.;
Huc, I. J. Am. Chem. Soc. 2004, 126, 10049.
(27) Green, M. M.; Reidy, M. P.; Johnson, R. J.; Darling, G.; O’Leary,
D. J.; Willson, G. J. Am. Chem. Soc. 1989, 111, 6452.
(30) Jennings, W. B. Chem. ReV. 1975, 75, 307.
(31) Schramm, M. P.; Rebek, J. New J. Chem. 2008, 32, 794.
9
15194 J. AM. CHEM. SOC. VOL. 130, NO. 45, 2008