W. Gong, K. Hiratani / Tetrahedron Letters 49 (2008) 5655–5657
5657
References and notes
1. For anion recognition, see reviews: (a) Schmidtchen, F. P.; Berger, M. Chem. Rev.
1997, 97, 1609; (b) Bianchi, A.; Bowman-James, K.; Carcia-Espana, E. Eds.;
Wiley-VCH: New York, 1997.; (c) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed.
2001, 40, 486; (d) Gale, P. A. Coord. Chem. Rev. 2003, 240, 1; (e) Katayev, E. A.;
Ustynyuk, Y. A.; Sessler, J. L. Coord. Chem. Rev. 2006, 250, 3004; (f) Schmidtchen,
F. P. Coord. Chem. Rev. 2006, 250, 2918; (g) Gale, P. A. Acc. Chem. Res. 2006, 39,
465; (h) Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355;
(i) Gale, P. A.; Garcia-Garrido, S. E.; Garric, J. Chem. Soc. Rev. 2008, 37, 151.
2. For anion sensing: (a) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103,
4419; (b) Kameta, N.; Hiratani, K. Chem. Commun. 2005, 725; (c) Kameta, N.;
Hiratani, K. Tetrahedron Lett. 2006, 47, 4947; (d) Gunnlaugsson, T.; Glynn, M.;
Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094; (e) Xu,
Z.-C.; Kim, S.; Lee, K.-H.; Yoon, J. Tetrahedron Lett. 2007, 48, 3797; (f) Dahan, A.;
Ashkenazi, T.; Kuznetsov, V.; Makievski, S.; Drug, E.; Fadeev, L.; Bramson, M.;
Schokoroy, S.; Rozenshine-Kemelmakher, E.; Gozin, M. J. Org. Chem. 2007, 72,
2289; (g) Luxami, V.; Kumar, S. Tetrahedron Lett. 2007, 48, 3083; (h) dos Santos,
M. G.; Cidalia, P. B.; Fernandez, S. E.; Plush, J.; Leonard, P.; Gunnlaugsson, T.
Chem. Commun. 2007, 3389; (i) Kumar, M.; Babu, J. N.; Bhalla, V.; Athwal, N. S.
Supramolecular Chem. 2007, 19, 511; (j) Chen, C.-Y.; Lin, T.-P.; Lin, C.-K.; Chen,
S.-C.; Tseng, M.-C.; Wen, Y.-S.; Sun, S.-S. J. Org. Chem. 2008, 73, 900.
Figure 4. Partial 1H NMR spectra of 1 in the absence (lower) and the presence
(upper) of 0.5 equiv H2PO4 in DMSO-d6. Black stars denote the all protons of
anthracene moieties and black triangle show all protons of pyridinium rings.
À
3. (a) Abouderbala, L. O.; Belcher, W. J.; Boutelle, M. G.; Cragg, P. J.; Dhaliwal, J.;
Fabre, M.; Steed, J. W.; Turner, D. R.; Wallace, K. J. Chem. Commun. 2002, 358; (b)
Wallace, K. J.; Belcher, W. J.; Turner, D. R.; Syed, K. F.; Steed, J. W. J. Am. Chem.
Soc. 2003, 125, 9699; (c) Belcher, W. J.; Fabre, M.; Farhan, T.; Steed, J. W. Org.
Biomol. Chem. 2006, 4, 781; (d) Turner, D. R.; Paterson, M. J.; Steed, J. W. J. Org.
Chem. 2006, 71, 1598; (e) Turner, D. R.; Paterson, M. J.; Steed, J. W. Chem.
Commun. 2008, 1395; (f) Filby, M. H.; Dickson, S. J.; Zaccheroni, N.; Prodi, L.;
Bonacchi, S.; Montalti, M.; Paterson, M. J.; Humphries, T. D.; Chiorboli, C.; Steed,
J. W. J. Am. Chem. Soc. 2008, 130, 4105; (g) Ghosh, K.; Masanta, G.;
Chattopadhyay, A. P. Tetrahedron Lett. 2007, 48, 6129; h(h) Ghosh, K.; Sarkar,
A. R.; Masanta, G. Tetrahedron Lett. 2007, 48, 8725; (i) Ghosh, K.; Masanta, G.
Tetrahedron Lett. 2008, 49, 2592.
À
Figure 5. Fluorescent response to H2PO4 via formation of excimer emission.
4. (a) Choi, K.; Hamilton, A. D. Coord. Chem. Rev. 2003, 240, 101; (b) Chmielewski,
M. J.; Jurczak, J. Chem. Eur. J. 2005, 11, 6080; (c) Bowman-James, K. Acc. Chem.
Res. 2005, 38, 671; (d) Korendovych, I. V.; Cho, M.; Butler, P. L.; Staples, R. J.;
Rybak-Akimova, E. V. Org. Lett. 2006, 8, 3171.
À
the effect of adding 0.5 equiv H2PO4 was recorded. It was clear
5. Abouderbala, L. O.; Belcher, W. J.; Boutelle, M. G.; Cragg, P. J.; Steed, J. W.; Turner,
D. R.; Wallace, K. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5001.
that the amide proton (from 11.55 to 12.86, 1.3 ppm shifted) and
hydrogen proton at the
a-position of pyridinium ring (from 9.25
6. Procedure for synthesis of compound 2: First, cis-cyclohexane 1,3,5-tricarboxylic
acid was reacted with thionyl chloride at 70 °C for 8 h to give the corresponding
acid chloride. After drying of 1 h under reduced pressure, this acid chloride was
used directly to the next reaction. Then, a solution containing 3-aminopyridine
(0.282 g, 3 mmol) and Et3N (1.01, 10 mmol) in dry THF (25 mL) was prepared
and cooled by ice-water bath. The aforementioned acid chloride (1 mmol) also
in dry THF (15 mL) was added dropwise into the above solution within about
20 min, and the stirring was continued for overnight under room temperature.
Then, the precipitated white solid was filtered, washed several times with
distilled water, and dried under reduced pressure. Without further purification,
it was conformed that this white solid was the target compound 2 (74%).
For compound2: 1H NMR (DMSO-d6, 500 MHz) 1.37 (m, cyclohexyl, 3H), 2.09 (m,
cyclohexyl, 3H), 2.58 (m, cyclohexyl, 3H), 7.33 (dd, pyridine, 3H), 8.04 (d,
J = 8.5 Hz, pyridine, 3H), 8.24 (d, J = 4 Hz, pyridine,3H), 8.73 (s, pyridine, 3H),
10.10 (br, ÀNH, 3H). ESI-MS (cationic mode), 445.2 (M+H); Elemental Anal.
Calcd for C24H24N6O3: C, 64.85; H, 5.44; N, 18.91. Found: C, 64.82; H, 5.53; N,
18.76. (18.91).
7. Procedure for synthesis of chemosensor 1: A mixture of compound 2 (0.444 g,
1 mmol) with 9-chloromethylanthracene (0.68 g, 3 mmol) in dry CH3CN was
refluxed for 48 h, and gradually yellow precipitate was formed. After cooling to
room temperature, the precipitate was filtered off and washed several times
with cold CH3CN. After recrystallization using EtOH, pure chemosensor 1 as
chloride salt was obtained in 46% yield. Then, the chloride salt (100 mg) was
dissolved in 1 ml DMF. During dropwise addition of saturated aqueous NH4PF6
to 9.60 ppm, 0.35 ppm shifted) displayed a remarkable downfield
shift upon addition of 0.5 equiv H2PO4 in DMSO-d6 solution, indi-
À
cating the presence of hydrogen bonding interactions between NH,
À
acidic CH and H2PO4 ion. On the other hand, other hydrogen pro-
tons at the pyridinium ring shifted to upfield implying the partic-
ipation of electrostatic interaction of charged pyridinium ring in
binding H2PO4À. In this context, the cooperative function of mul-
ti-interactions within the binding cavity gave rise to the excellent
À
binding and sensing properties of chemosensor 1 toward H2PO4
in competitive polar organic solvents. Furthermore, all protons of
anthracene moieties were slightly shifted to higher magnetic field.
À
This result suggested that the binding of H2PO4 via cooperation of
multi-interactions induced the reduction of the distance between
plural anthracene moieties and correspondingly the formation of
excimer (Fig. 1).
Based on above results, the proposed binding process of recep-
À
tor 1 toward H2PO4 is shown in Figure 5. Before complexation
with H2PO4À, anthracene moieties are separated each other remote
enough to emit only monomer fluorescence. This relative remote
distance between them is induced by its favorable conformation,
which might be controlled by the six-membered intramolecular
hydrogen bonding between carbonyl group and acidic CH at the
solution (2 ml),
a light yellow precipitate was formed. After washing the
precipitate several times with distilled water, the desired chemosensor 1 was
obtained in 88% yield.
For chemosensor 1: 1H NMR (DMSO-d6, 500 MHz) 1.32 (m, cyclohexyl, 3H), 1.94
(m, cyclohexyl, 3H), 2.53 (m, cyclohexyl, 3H), 6.95 (s, –CH2–, 2H), 7.67 (m,
anthracene, 12H), 8.02 (m, pyridinium, 3H), 8.26 (d, J = 8, anthracene, 6H), 8.39
(d, J = 8, anthracene, 6H), 8.57 (d, J = 9.5, pyridinium, 3H), 8.69 (d, J = 9.5,
pyridinium, 3H), 8.94 (s, anthracene, 3H), 9.25 (s, pyridinium, 3H), 11.55 (br,
–NH, 3H). ESI-MS (cationic mode), 1015.8 (MÀ3PF6ÀÀ2H+); Elemental Anal.
Calcd for C69H57f18N6O3P3: C, 57.03; H, 3.95; N, 5.78. Found: C, 57.21; H, 3.87; N,
5.66.
À
pyridinium ring. However, when H2PO4 was introduced, the
anion-dependent comformational change accomplished by cooper-
ative multi-interactions induced the cavity in receptor 1 selective
À
only for H2PO4 complexation. As a result, the anthracene moieties
come closer and overlap some extent to form the excimer emission
of them, which emitted strong green fluorescence.
8. a Amendola, V.; Boiocchi, M.; Fabbrizzi, L.; Palchetti, A. Chem. Eur. J. 2005, 11,
5648; b Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14; c Wiskur, S. L.;
Floriano, P. N.; Anslyn, E. V.; McDevitt, J. T. Angew. Chem., Int. Ed. 2003, 42, 2070;
d Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373.
9. (a) Fages, F.; Desvergne, J.-P.; Laurent, H. B. J. Org. Chem. 1994, 59, 5264; (b)
Silver, A. P. D.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; Mccoy, C.
P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515; (c) Molard, Y.;
Bassani, D. M.; Desvergne, J. P.; Horton, P. N.; Hursthouse, M. B.; Tucker, J. H. R.
Angew. Chem., Int. Ed. 2005, 44, 1072; (d) Cho, H. K.; Lee, D. H.; Hong, J.-In Chem.
Commun. 2005, 1690.
In conclusion, a new tripodal fluorescent chemosensor 1 based
À
on amidepyridinium binding motif for selective H2PO4 sensing
À
was developed. The excellent H2PO4 binding is attributed to the
cooperation of multi-interactions, such as hydrogen bonding, elec-
trostatic interactions, as well as the dynamic conformational
change via formation of unique binding-induced excimer.