Neomycin-Lipid Conjugates
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 19 6163
(7) Biehl, L. G. Anthelmintics for swine. Vet. Clin. North. Am. Food Anim.
Pract. 1986, 2, 481–488.
instance, sphingosine exhibits potent antimicrobial activity
against S. aureus (MIC ) 2 µg/mL), MRSA (MIC ) 4-5 µg/
mL), E. coli (MIC ) 42 µg/mL), and C. albicans (MIC ) 6-18
µg/mL).22 Phytosphingosine, a marketed personal care product
isolated from plants and fungi, shows potent broad-spectrum
antimicrobial activity and is effective against acne and skin
inflammation. Sphingosines are amino alcohols in which a
lipophilic (usually C18) carbon chain contains a polar headgroup
consisting of two 1,2-hydroxyamine functions (Figure 1).
Aminoglycosides are functionally related to sphingosines and
contain multiple copies of the 1,2- or 1,3 hydroxyamine motif
presented on a cyclic scaffold. Moreover, cationic surface-active
detergents such as benzalkonium chloride are clinically used
as strong disinfectants being effective on both Gram-positive
and Gram-negative organisms. Several modes of action of
benzalkonium chlorides have been proposed, including disrup-
tion of cell membrane, inactivation of enzymes, and denaturation
of cell proteins. The MIC of optimized benzalkonium chlorides
is 6.25 µg/mL on MRSA,23 very similar to the neomycin-lipid
conjugates 15 and 16. This suggests that polycationic amino-
glycoside-lipid conjugates may find use as potential antiseptics
and antimicrobial disinfectants. Moreover, our results are
consistent with previous studies on glycopeptide antibiotics such
as teicoplanin and LY264826 that have shown that attachment
of hydrophobic moieties can enhance antimicrobial efficacy by
affecting the dimerization ratio or incorporation into the bacterial
cell membrane.37,38
(8) Nakagawa, A.; Fujimoto, T.; Omura, S.; Walsh, J. C.; Stotosh, R. L.;
George, B. Hygromycin A, an antitreponemal substance. II. Thera-
peutic effect for swine dysentery. J. Antibiot. 1987, 40, 1627–1635.
(9) Schwarz, S.; Kehrenberg, C.; Salmon, S. A.; Watts, J. L. In vitro
activities of spectinomycin and comparator agents against Pasteurella
multocida and Mannheimia haemolytica from respiratory tract infec-
tions of cattle. J. Antimicrob. Chemother. 2004, 53, 379–382.
(10) Mingeot-Leclercq, M. P.; Tulkens, P. M. Aminoglycosides: Nephro-
toxicity. Antimicrob. Agents Chemother. 1999, 43, 1003–1012.
(11) Mingeot-Leclercq, M. P.; Glupczynski, Y.; Tulkens, P. M. Aminogly-
cosides: activity and resistance. Antimicrob. Agents Chemother. 1999,
43, 727–737.
(12) Neu, H. C. The Crisis in antibiotic resistance. Science 1992, 257, 1064–
1073.
(13) Hayes, J. D.; Wolf, C. R. Molecular mechanism of drug resistance.
Biochem. J. 1990, 272, 281–295.
(14) Jacoby, G. A.; Archer, G. C. New mechanisms of bacterial resistance
to antimicrobial agents. New Engl. J. Med. 1991, 324, 601–612.
(15) Taber, H. W.; Mueller, J. P.; Miller, P. F.; Arrow, A. S. Bacterial
uptake of aminoglycoside antibiotics. Microbiol. ReV. 1987, 429–457.
(16) Gao, X.; Huang, L. Cationic liposome-mediated gene transfer. Gene
Ther. 1995, 2, 710–722.
(17) Miller, A. D. Cationic liposomes for gene therapy. Angew. Chem.,
Intl. Ed. 1998, 37, 1768–1785.
(18) Hersh, E. M. Stopeck, A. T. Self-Assembling Complexes for Gene
DeliVery; Kabanov, A. V., Felgner, P. L., Seymour, L. W. , Eds.;
Wiley: Chichester, UK, 1998, pp 421-436
(19) Sainlos, M.; Belmont, P.; Vigneron, J. P.; Lehn, P.; Lehn, J-.M.
Aminoglycoside-derived cationic lipids for gene transfection: trans-
fection: synthesis of kanamycin A derivatives. Eur. J. Org. Chem.
2003, 2764–2774.
(20) Cabral, J. P. S. Mode of antibacterial action of dodine (dodecylguani-
dine monoacetate) in Pseudomonas syringae. Can. J. Microbiol. 1992,
38, 115–123.
Conclusion
(21) Jono, K.; Takayama, T.; Kuno, M.; Higashide, E. Effect of alkyl chain
length of benzalkonium chloride on the bactericidal activity and
binding to organic materials. Chem. Pharm. Bull. 1986, 34, 4215–
4224.
(22) Drake, D. R.; Brogden, K. A.; Dawson, D. V.; Wertz, P. A.
Antimicrobial lipids at the skin surface. J. Lipid Res. 2008, 49, 4–11.
(23) Kitahara, T.; Koyama, N.; Matsuda, J.; Aoyama, Y.; Hirakata, Y.;
Kamishira, S.; Kohno, S.; Nakashima, M.; Sasaki, H. Antimicrobial
activity of saturated fatty acids and fatty amines against methicillin-
resistant Staphylococcus aureus. Biol. Pharm. Bull. 2004, 27, 1321–
1326.
(24) Cookson, B. D.; Bolton, M. C.; Platt, J. H. Chlorohexidine resistance
in methicillin-resistant Staphylococcus aureus or just an elevated MIC?
An in vitro and in vivo assessment. Antimicrob. Agents Chemother.
1991, 35, 1997–2002.
(25) Ku¨gler, R.; Boulassa, O.; Rondelez, F. Evidence of a charge-density
threshold for optimum efficiency of biocidal cationic surfaces.
Microbiology 2005, 151, 1341–1348.
(26) Lambert, P. A.; Smith, A. R. W. The mode of action of N-(n-dodecyl)
diethanolamine with particular reference to the effect of protonation
on uptake by Escherichia coli. J. Gen. Microbiol. 1977, 103, 367–
374.
(27) Tomlinson, E.; Brown, M. R. W.; Davies, S. S. Effect of colloidal
association on the measured activity of alkylbenzyldimethylammonium
chlorides against Pseudomonas aeruginosa. J. Med. Chem. 1977, 20,
1277–1282.
In the present study, we have established that the antibacterial
activity of neomycin-lipid conjugates depends on the length
and nature of the lipid moiety. Optimal Gram-positive activity
is achieved by conjugation to saturated C16- or C20-lipids. Shorter
aliphatic chains or aromatic chains result in reduced activity.
Neomycin-C16 or neomycin-C20 conjugates are particularly
active against MDR strains including MRSA and MRSE. Very
importantly, C16- or C20-lipid conjugation in neomycin
installs potent antimicrobial activity against clinically relevant,
neomycin-resistant MRSA. Our results suggest that aminogly-
coside-based polycationic lipids form a new class of antimi-
crobials with high potency against Gram-positive MDR bacteria.
The high activity of C16- or C20-lipid conjugates against
MDR Gram-positive bacteria suggests that these compounds
may find use as potential antiseptics and antimicrobial disin-
fectants or in topical infections.
Acknowledgment. We thank the National Sciences and
Engineering Research Council of Canada (NSERC) and the
University of Manitoba for financial support.
Supporting Information Available: Synthetic procedures,
spectral and analytical data for new compounds and antimicrobial
testing protocols. This material is available free of charge via the
(28) (a) Davis, B. D. Mechanism of bactericidal action of aminoglycosides.
Microbiol. ReV. 1987, 51, 341–350. (b) Moazed, D.; Noller, H. F.
Interaction of antibiotics with functional sites in 16S ribosomal RNA.
Nature 1987, 327, 389–394. (c) Shaw, K. J.; Rather, P. N.; Hare, R. S.;
Miller, G. H. Molecular genetics of aminoglycoside resistance genes
and familial relationships of the aminoglycoside modifying enzymes.
Microbiol. ReV. 1993, 57, 138–163. (d) Mingeot-Leclercq, M.-P.;
Glupczynski, Y.; Tulkens, P. M. Aminoglycosides: Activity and
Resistance. Antimicrob. Agents Chemother. 1999, 43, 727–737. (e)
Hancock, E. W R. Aminoglycoside uptake and mode of action, with
special reference to streptomycin and gentamicin: II. Effects of
aminoglycosides on cells. J. Antimicrob. Chemother. 1981, 8, 429–
445.
References
(1) Neu, H. C. The crisis in antibiotic resistance. Science 1992, 257, 1064–
1073.
(2) Walsh, C. Molecular mechanisms that confer antibacterial drug
resistance. Nature 2000, 406, 144–145.
(3) Umezawa, H.; Hooper, R. I., Eds. Aminoglycoside Antibiotics;
Springer-Verlag: New York, Heidelberg, 1982.
(29) Shelburne, S. A.; Musher, D. M.; Hulten, K.; Ceasar, H.; Lu, Y. M.;
Bhaila, I.; Hamill, J. R. In Vitro killing of community-associated
methicillin-resistant Staphylococcus aureus with drug combinations.
Antimicrob. Agents Chemother. 2004, 48, 4016–4019.
(30) Asensio, J. L.; Hidalogo, A.; Bastida, A.; Torrado, M.; Corzana, F.;
Chiara, J. L.; Garcia-Junceda, E.; Canada, J.; Jimenez-Barbero, J. A
(4) Moazed, S.; Noller, H. F. Interaction of antibiotics with functional
sites in 16S ribosomal RNA. Nature 1987, 327, 389–394.
(5) Purohit, P.; Stern, S. Interactions of a small RNA with antibiotic and
RNA ligands of the 30S subunit. Nature 1994, 370, 659–662.
(6) Begg, E. J.; Barclay, M. L. Aminglycosides: 50 years on. Br. J. Clin.
Pharmacol. 1995, 39, 597–603.