Communication
ChemComm
(UT Southwestern) for repeating and confirming the reactions in
Fig. 4 and 5.
Notes and references
1 (a) Y. Ishihara and P. S. Baran, Synlett, 2010, 1733; (b) J. L. Roizen,
M. E. Harvey and J. Du Bois, Acc. Chem. Res., 2011, 45, 911;
(c) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res.,
2012, 45, 788; (d) S. R. Neufeldt and M. S. Sanford, Acc. Chem. Res.,
2011, 45, 936.
2 (a) J. Lu, X. Tan and C. Chen, J. Am. Chem. Soc., 2007, 129, 7768;
(b) J.-B. Xia, K. W. Cormier and C. Chen, Chem. Sci., 2012, 3, 2240;
(c) C. Zhu, J.-B. Xia and C. Chen, Tetrahedron Lett., 2014, 55, 232.
3 (a) J.-B. Xia, C. Zhu and C. Chen, J. Am. Chem. Soc., 2013, 135, 17494;
(b) J.-B. Xia, Y. Ma and C. Chen, Org. Chem. Front., 2014, 1, 468.
4 (a) K. L. Hull, W. Q. Anani and M. S. Sanford, J. Am. Chem. Soc., 2006,
128, 7134; (b) K. B. McMurtrey, J. M. Racowski and M. S. Sanford,
Org. Lett., 2012, 14, 4094; (c) J. M. Racowski, J. B. Gary and
M. S. Sanford, Angew. Chem., Int. Ed., 2012, 51, 3414.
Fig. 5 CFL-irradiation promoted Norrish type II cleavage and Norrish–
Yang cyclization of 22.
5 (a) X. Wang, T.-S. Mei and J.-Q. Yu, J. Am. Chem. Soc., 2009,
131, 7520; (b) K. S. L. Chan, M. Wasa, X. Wang and J.-Q. Yu, Angew.
Chem., Int. Ed., 2011, 50, 9081.
6 M.-G. Braun and A. G. Doyle, J. Am. Chem. Soc., 2013, 135, 12990.
7 (a) W. Liu, X. Huang, M.-J. Cheng, R. J. Nielsen, W. A. Goddard III
and J. T. Groves, Science, 2012, 337, 1322; (b) W. Liu and J. T. Groves,
Angew. Chem., Int. Ed., 2013, 52, 6024; (c) X. Huang, W. Liu, H. Ren,
R. Neelamegam, J. M. Hooker and J. T. Groves, J. Am. Chem. Soc.,
2014, 136, 6842.
8 (a) S. Bloom, C. R. Pitts, D. C. Miller, N. Haselton, M. G. Holl,
E. Urheim and T. Lectka, Angew. Chem., Int. Ed., 2012, 51, 10580;
(b) S. Bloom, C. R. Pitts, R. Woltornist, A. Griswold, M. G. Holl and
T. Lectka, Org. Lett., 2013, 15, 1722; (c) S. Bloom, J. L. Knippela and
T. Lectka, Chem. Sci., 2014, 5, 1175; (d) C. R. Pitts, S. Bloom,
R. Woltornist, D. J. Auvenshine, L. R. Ryzhkov, M. A. Siegler and
T. Lectka, J. Am. Chem. Soc., 2014, 136, 9780; (e) S. Bloom,
J. L. Knippel, M. G. Holl, R. Barber and T. Lectka, Tetrahedron Lett.,
2014, 55, 4576.
Fig. 6 CFL-irradiation promoted photoreactions of 27 and 30.
Further support for the hypothesis that CFL-irradiation can
promote the photoexcitation of simple monoarylketones follows
the observation that CFL-irradiation could also promote photo-
reactions of colorless enones/enals (n - p* transition lmax
B
9 Y. Amaoka, M. Nagatomo and M. Inoue, Org. Lett., 2013, 15, 2160.
10 P. Xu, S. Guo, L. Wang and P. Tang, Angew. Chem., Int. Ed., 2014,
53, 5955.
320 nm). For example, photolysis of cyclopentenone (27) in
2-propanol (28) gave 29 through an ethereal C–H abstraction
by 27* (Fig. 6). Results of the light–dark cycle experiments also
suggest that this C–H abstraction/conjugate addition reaction is
11 P. S. Fier and J. F. Hartwig, Science, 2013, 342, 956.
12 S. D. Halperin, H. Fan, S. Chang, R. E. Martin and R. Britton, Angew.
Chem., Int. Ed., 2014, 53, 4690.
not a free radical chain reaction (ESI†).21 Additionally, we found 13 C. W. Kee, K. F. Chin, M. W. Wong and C.-H. Tan, Chem. Commun.,
2014, 50, 8211.
that [2+2] cycloaddition of (Z)-enal 30 could also be induced by
CFL-irradiation to give 31 together with the E/Z isomerization
14 For examples of CFL/LED-promoted photoreactions, see: (a) T. P. Yoon,
ACS Catal., 2013, 3, 895; (b) C. K. Prier, D. A. Rankic and
product 32 that also cyclized to 31 very slowly.
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (c) J. M. R.
Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102;
(d) J. Xun and W.-J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828.
15 (a) M. Khazova and J. B. O’Hagan, Radiat. Prot. Dosim., 2008,
131, 521; (b) T. Mironava, M. Hadjiargyrou, M. Simon and
M. H. Rafailovich, Photochem. Photobiol., 2012, 88, 1497.
16 Light in the range of 375–400 nm has been referred to as both UV
and visible light.
In conclusion, we have shown that, despite low quantum
yields, short violet light (375–400 nm) generated by a low-energy
household CFL can promote photoreactions of monoarylketones
and enones/enals that have an R band lmax B 320 nm.
By avoiding the harmful high-energy UV light, these photoreac-
tions can be performed without using specialized photochemical 17 R. E. Banks, N. J. Lawrence and A. L. Popplewell, Synlett, 1994, 831.
18 (a) T. Newhouse and P. S. Baran, Angew. Chem., Int. Ed., 2011,
equipment and give fewer side-reactions. Using this mild photo-
50, 3362; (b) M. S. Chen and M. C. White, Science, 2010, 327, 566.
lysis method, photoexcited acetophenone can be readily gener-
ated to catalyze the fluorination of unactivated C(sp3)–H groups.
This new fluorination reaction is operationally simple and
utilizes a cheap, readily available catalyst. Further investigation
of the utility of this photolytic fluorination method is underway.
Financial support was provided by NIH (NIGMS R01-
GM079554), the Welch Foundation (I-1596) and UT Southwestern.
We thank Mr Wenhan Zhang of Prof. Joeseph Ready’s lab
´
´
19 (a) E. Arceo, I. D. Jurberg, A. Alvarez-Fernandez and P. Melchiorre,
Nat. Chem., 2013, 5, 750; (b) R. Brimioulle and T. Bach, Science, 2013,
342, 840.
20 (a) D. L. Walker and B. Fraser-Reid, J. Am. Chem. Soc., 1975, 97, 6251;
(b) Z. Benko and B. Fraser-Reid, J. Org. Chem., 1988, 53, 2066;
(c) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev.,
2007, 107, 2725.
21 These experiments do not exclude that possibility that a radical
chain reaction with non-negligible rates of chain termination is
operating.
11704 | Chem. Commun., 2014, 50, 11701--11704
This journal is ©The Royal Society of Chemistry 2014