7408
Q. Ling et al. / Bioorg. Med. Chem. 16 (2008) 7399–7409
period of 2 h. The reaction mixture was diluted with 10 mL of H2O
and extracted with CH2Cl2 (4Â 8 mL). The combined organic
phases were washed with brine, dried over anhydrous Na2SO4,
and evaporated to give 36 (19.4 mg) as a white solid. Mp: 180–
181 °C. 1H NMR (300 MHz, CDCl3): d 10.26 (s, 1H), 7.20 (d, 1H,
J = 8.6 Hz), 6.86 (d, 1H, J = 8.6 Hz), 5.37 (t, 1H, J = 4.2 Hz), 4.73 (m,
2H), 3.89 (s, 3H), 3.23 (m, 2H); 13C NMR (400 MHz, CDCl3): d
192.0, 162.3, 134.2, 130.9, 126.4, 122.4, 109.5, 91.7, 62.4, 55.8,
33.2. EI-MS (m/z): 210 (M+).
AutoDock472 was adopted to dock the ligand 1 into the binding site
of LAR which located around Cys1522. The Lamarckian genetic
algorithm (LGA) was applied to deal with the protein–ligand inter-
actions. A Solis and Wets local search was performed for the energy
minimization on a user-specified proportion of the population. Due
to the covalent interaction hypothesis we proposed, we first re-
moved the side chain of residue Cys1522 and performed the dock-
ing, then a list of conformations having 3-C of ligand 1 within 1.5 Å
of sulfur atom of Cys1522 were collected. Finally the conformation
with lowest predicted free energy was picked for later interaction
analysis. All the protein and ligand structures were prepared in
graphics software AutoDock tool according with default parame-
ters. To explore the conformational space of ligands, some param-
eters in AutoDock4 were set up as follows.
4.1.34. 3-Bromo-6-methoxy-2-(2-oxo-ethyl)-benzaldehyde (38)
Compound 38 was prepared from 2 according to the procedure
as described for 30. 1H NMR (300 MHz, CDCl3): d 10.48 (s, 1H), 9.77
(s, 1H), 7.75 (d, 1H, J = 9 Hz), 6.90 (d, 1H, J = 9 Hz), 4.37 (s, 2H), 3.93
(s, 3H). EI-MS (m/z): 255 (M+). 39 1H NMR (300 MHz, DMSO-d6): d
7.72 (d, 1H, J = 8.7 Hz), 6.84 (d, 1H, J = 8.7 Hz), 5.92 (s, 1H), 5.44–
5.40 (m, 1H), 3.76 (s, 3H), 2.95–2.72 (m, 2H).
The overall translation step was set to 0.2 Å, and the overall
rotation and torsion rotation step were set to 5° in the docking
study. The number of GA generations, the number of energy eval-
uations, and the number of docking runs were set to 370,000,
1,500,000, and 50, respectively.
4.2. Enzymatic assay
4.2.1. Inhibition assay
Acknowledgements
Recombinant LAR catalytic domain was expressed and purified
according to the previous report.58 The enzymatic activities of the
LAR catalytic domain were determined at 30 °C by monitoring the
hydrolysis of pNPP. Dephosphorylation of pNPP generates product
pNP, which was monitored at an absorbance of 405 nm by the
EnVision multilabel plate reader (PerkinElmer Life Sciences, Bos-
This work was supported by the Hi-tech Research and
Development Program of China through Grant Nos.
2006AA02Z315 (L.-P.M.) and 2007AA09Z402 (J.L.).
References and notes
ton, MA, USA). In a typical inhibition assay, 2
lL DMSO solution
with or without inhibitor pre-incubated with 20
tion containing 50 mM Tris, pH 8.0, 50 mM NaCl, 2 mM EDTA,
2 mM dithiothreitol, and 300 nM recombinant LAR for 10 min, then
the enzymatic reaction was initiated through adding 78 lL sub-
strate buffer containing 50 mM MES, pH 6.0, 2 mM EDTA, 2 mM
dithiothreitol, and 2 mM pNPP. Absorbance at 405 nm was contin-
uously monitored and the initial rate of the hydrolysis was deter-
mined using the early linear region of the enzymatic reaction
kinetic curve. The IC50 was calculated with Prism 4 software
(Graphpad, San Diego, CA, USA) from the non-linear curve fitting
of the percentage of inhibition (% inhibition) versus the inhibitor
concentration [I] by using the following equation: % Inhibi-
tion = 100/(1 + [IC50/[I]]k), where k is the Hill coefficient.
l
L enzyme solu-
1. Fischer, E. H.; Charbonneau, H.; Tonks, N. K. Science 1991, 13, 1497.
2. Burke, T. R., Jr.; Zhang, Z. Y. Biopolymers 1998, 47, 225.
3. Zhang, Z. Y. Acc. Chem. Res. 2003, 36, 385.
4. Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik,
A.; Hunter, T.; Dixon, J.; Mustelin, T. Cell 2004, 117, 699.
5. Zhang, Z. Y. Biochim. Biophys. Acta 2005, 1754, 100.
6. Hunter, T. Cell 2000, 100, 113.
7. Tonks, N. K.; Neel, B. G. Curr. Opin. Cell Biol. 2001, 13, 182.
8. Kappert, K.; Peters, K. G.; Bohmer, F. D.; Ostman, A. Cardiovasc. Res. 2005, 65, 587.
9. Stoker, A. W. J. Endocrinol. 2005, 185, 19.
10. Tonks, N. K. Nat. Rev. Mol. Cell Biol. 2006, 7, 833.
11. Wang, W. J.; Kuo, J. Ch.; Ku, W.; Lee, Y. R.; Lin, F. Ch.; Chang, Y. L.; Lin, Y. M.;
Chen, Ch. H.; Huang, Y. P.; Chiang, M. J.; Yeh, Sh. W.; Wu, P. R.; Shen, Ch. H.; Wu,
Ch. T.; Chen, R. W. Mol. Cell 2007, 27, 701.
12. Zhang, Z. Y.; Wang, Y.; Wu, L.; Stuckey, J. A.; Schubert, H. L.; Saper, M. A.; Dixon,
J. E. Biochemistry 1994, 33, 15266.
13. Tabernero, L.; Aricescu, A. R.; Jones, E. Y.; Szedlacsek, S. E. FEBS 2008, 275, 867.
14. Li, L.; Dixon, J. E. Semin. Immunol. 2000, 12, 75.
15. Zhang, Z. Y. Curr. Opin. Chem. Biol. 2001, 5, 416.
16. Zhang, Z. Y.; Lee, S. Y. Exp. Opin. Invest. Drug 2003, 12, 223.
17. Tonks, N. K. FEBS Lett. 2003, 546, 140.
4.2.2. Dialysis
The dialysis method was used to determine the reversibility on
the inhibition of illudalic acid on LAR. LAR (1500 nM) was pre-incu-
bated with illudalic acid (20
to the method mentionedabove. Then 1.5 mL samples were dialyzed
against enzyme solution for indicated time, 60 L samples were ta-
18. Lund, I. K.; Andersen, H. S.; Iversen, L. F.; Olsen, O. H.; Moller, K. B.; Pedersen, A.
K.; Ge, Y.; Holsworth, D. D.; Newman, M. J.; Axe, F. U.; Moller, N. P. J. Biol. Chem.
2004, 279, 24226.
19. Bourdeau, A.; Dube, N.; Tremblay, M. L. Curr. Opin. Cell Biol. 2005, 17, 203.
20. Bialy, L.; Waldmann, H. Angew. Chem. Int. Ed. 2005, 44, 3814.
21. Dewang, P. M.; Hsu, N. M.; Peng, S. Z.; Li, W. R. Curr. Med. Chem. 2005, 12, 1.
22. Hansen, S. K.; Cancilla, M. T.; Shiau, T. P.; Kung, J.; Chen, T.; Erlanson, D. A.
Biochemistry 2005, 44, 7704.
23. Tautz, L.; Pellecchia, M.; Mustelin, T. Expert Opin. Ther. Targets 2006, 10, 157.
24. Ventura, J. J.; Nebreda, A. R. Clin. Trans. Oncol. 2006, 8, 153.
25. Tiganis, T.; Bennett, A. M. Biochem. J. 2007, 402, 1.
26. Streuli, M.; Krueger, N. X.; Hall, L. R.; Schlossman, S. F.; Saito, H. J. Exp. Med.
1988, 168, 1523.
27. Cheng, A.; Dubé, N.; Gu, F.; Tremblay, M. L. Eur. J. Biochem. 2002, 269, 1050.
28. Mooney, R. A.; Levea, C. M. Curr. Top. Med. Chem. 2003, 3, 809.
29. Chagnon, M. J.; Uetani, N.; Tremblay, M. L. Biochem. Cell Biol. 2004, 82, 664.
30. Heneberg, P.; Dráber, P. Curr. Med. Chem. 2005, 12, 1859.
31. Yang, T.; Bernabeu, R.; Xie, Y.; Zhang, J. L.; Massa, S. M.; Rempel, H. C.; Longo, F.
M. J. Neurosci. 2003, 23, 3353.
32. Dunah, A. W.; Hueske, E.; Wyszynski, M.; Hoogenraad, C. C.; Jaworski, J.; Pak, D.
T.; Simonetta, A.; Liu, G. S.; Sheng, M. Nat. Neurosci. 2005, 8, 458.
33. Yang, T.; Massa, S. M.; Longo, F. M. J. Neurobiol. 2006, 66, 1420.
34. Haapasalo, A.; Kim, D. Y.; Carey, B. W.; Turunen, M. K.; Pettingell, W. H. J. Biol.
Chem. 2007, 282, 9063.
lM) or DMSO (2%) for 10 min according
l
ken out, and their phosphatase activities were determined.
4.3. ESI-MS/MS studies
5
l
L inhibitor 22 (17 mM) was incubated with 90
M) and 5 L LAR simulacrum N-acetyl- -cysteine (30 mM) at
pH 8.0 for 10 min (Scheme 8), and the pH was then adjusted to 6
by adding 400 L substrate solution (the same condition as that
lL LAR
(32
l
l
L
l
of the inhibition assay). LAR enzyme was removed from the reac-
tion mixture by using Amicon Ultra 5K centrifugal filter devices
(Millipore Corporation) spinning at 7500g for 10 min. The obtained
sample was analyzed by ESI-MS/MS under low-resolution condi-
tions (positive ion mode).
4.4. Computational docking study
35. Tsai, A. Y. M.; Itoh, M.; Streuli, M.; Thai, T.; Saito, H. J. Biol. Chem. 1991, 266,
10534.
The three-dimensional crystal structure of LAR was retrieved
from the PDB database (the access PDB code: 1LAR). The software
36. Mooney, R. A.; Kulas, D. T.; Bleyle, L. A.; Novak, J. S. Biochem. Biophys. Res.
Commun. 1997, 235, 709.