Molecules 2019, 24, 4422
8 of 11
[Au2(SC6H4CF3-2)2(
µ
-dppp)] (
4
). White powder. Yield: 87%. mp 121–124 ◦C; anal. C 42.4, H 2.8, S
5.2%, calcd for C41H34Au2F6S2P2, C 42.4, H 2.9, S 5.5%; IR (ATR)
νmax 2921, 2859, 1436, 1309, 1100, 1027
cm−1; 1H-NMR (CDCl3, 400 MHz)
δ
7.68–7.58 (8H, m), 7.52–7.48 (12H, m), 6.96–6.85 (8H, m), 2.82 (4H,
dt, J = 10.5, 7.3 Hz), 1.96 (2H, tp, J = 14.8, 7.2 Hz); 31P-NMR (CDCl3, 162 MHz)
δ
29.28 ppm, 19F-NMR
(CDCl3, 376.5 MHz) δ −64.59 (6F, s) ppm; FAB+ m/z 1357 [MAu]+ (25), 983 [C34H30Au2F3P2S]+ (100).
[Au2(SC6H4CF3-4)2(µ-dppp)] (5
). White powder. Yield: 79%. mp 158–160 ◦C; anal. C 42.6, H 2.7,
S 5.1%, calcd for C41H34Au2F6S2P2, C 42.4, H 2.9, S 5.5%; IR (ATR)
νmax 2906, 2862, 1599, 1326, 1088
cm–1; 1H-NMR (CDCl3, 400 MHz)
δ
7.68–7.57 (12H, m), 7.51–7.39 (12H, m), 7.24 (4H, d), 2.83 (4H, dt,
J = 10.4, 7.2 Hz), 1.97 (2H, tp, J = 14.6, 7.2 Hz); 31P-NMR (CDCl3, 162 MHz)
δ
28.64 ppm, 19F-NMR
(CDCl3, 376.5 MHz) δ6 −4.73 (6F, s) ppm; FAB+ m/z 1357 [MAu]+ (45), 983 [C34H30Au2F3P2S]+ (100).
[Au2(SC6H3F2-3,4)2(µ-dppp)] (6
). White powder. Yield: 92%. mp 174–176 ◦C; anal. C 42.5, H 2.4,
S 5.6%, calcd for C39H32Au2F4S2P2, C 42.7, H 2.9, S 5.8%; IR (ATR)
cm−1; 1H-NMR (CDCl3, 400 MHz)
7.67–7.60 (8H, m), 7.53–7.41 (12H, m,), 7.33–7.27 (2H, m), 7.20–7.15
(2H, m), 6.83 (2H, dt, J = 10.5, 7.3 Hz), 2.84 (4H, dt, J = 10.5, 7.2 Hz), 2.02–1.85 (2H, m); 31P-NMR
(CDCl3, 162 MHz) 41.24 (2F, m), 147.95 (2F, m) ppm;
28.06 ppm, 19F-NMR (CDCl3, 376.5 MHz)
FAB+ m/z 1293 [MAu]+ (20), 951 [C33H29Au2F2P2S]+ (100).
[Au2(SC6H3F2-3,5)2( -dppp)] (
). White powder. Yield: 92%. mp 141–143 ◦C; anal. C 43.0, H 2.6,
S 5.5%, calcd for C39H32Au2F4S2P2, C 42.7, H 2.9, S 5.8%; IR (ATR) 3059, 2902, 1575, 1435, 978
νmax 2958, 2855, 1492, 1268, 1105
δ
δ
δ1
−
−
µ
7
ν
max
cm−1; 1H-NMR (CDCl3, 400 MHz)
tt, J = 9.1, 2.3 Hz), 2.85 (4H, dt, J = 10.5, 7.2 Hz), 1.96 (2H, tp, J = 14.7, 7.3 Hz); 31P-NMR (CDCl3, 162
MHz) 10.63 (4F, s) ppm; FAB+ m/z 1293 [MAu]+ (10),
26.39 ppm, 19F-NMR (CDCl3, 376.5 MHz)
951 [C33H29Au2F2P2S]+ (100).
[Au2(SC6H4F-2)2( -dppp)] (
S 6.2%, calcd for C39H34Au2F2S2P2, C 44.2, H 3.2, S 6.0%; IR (ATR)
cm−1; 1H-NMR (CDCl3, 400 MHz)
7.70–7.58 (8H, m), 7.52–7.38 (12H, m), 6.96–6.84 (8H, m), 2.82 (4H,
dt, J = 10.5, 7.3 Hz), 1.96 (2H, tp, J = 14.8. 7.3 Hz); 31P-NMR (CDCl3, 162 MHz) 27.95 ppm, 19F-NMR
(CDCl3, 376.5 MHz)
07.70 (2F, m) ppm; FAB+ m/z 1257 [MAu]+ (30), 933 [C33H30Au2FP2S]+ (100).
[Au2(SC6H4F-3)2( -dppp)] (
). White powder. Yield: 80%. mp 168–170 ◦C; anal. C 44.1, H 3.0, S
5.7%, calcd for C39H34Au2F2S2P2, C 44.2, H 3.2, S 6.0%; IR (ATR) max 2926, 2871, 1568, 1462, 1104
cm−1; 1H-NMR (CDCl3, 400 MHz)
7.68–7.59 (8H, m), 7.51–7.37 (12H, m), 7.33–7.23 (4H, m), 7.01 (2H,
δ 7.68–7.62 (8H, m), 7.54–7.41 (12H, m,), 7.11–6.97 (4H, m), 6.43 (2H,
δ
δ
1
−
µ
8
). White powder. Yield: 67%. mp 138–140 ◦C; anal. C 44.5, H 3.1,
max 3055, 2928, 1464, 1435, 1102
ν
δ
δ
δ
1
µ
−
9
ν
δ
td, J = 8.0, 6.3 Hz), 6.67 (2H, ttd, J = 8.3, 2.5, 1.0 Hz), 2.84 (4H, dt, J = 10.5, 7.3 Hz), 1.96 (2H, tp, J = 14.8,
7.2 Hz); 31P-NMR (CDCl3, 162 MHz)
δ
28.56 ppm, 19F-NMR (CDCl3, 376.5 MHz) δ −116.90 (2F, s) ppm;
FAB+ m/z 1257 [MAu]+ (23), 933 [C33H30Au2FP2S]+ (100).
[Au2(SC6H4F-4)2(
S 5.6%, calcd for C39H34Au2F2S2P2, C 44.2, H 3.2, S 6.0%; IR (ATR)
cm−1; 1H-NMR (CDCl3, 400 MHz)
7.64-7.59 (8H, m), 7.49–7.36 (16H, m), 6.77–6.71 (4H, m), 2.81 (4H,
µ
-dppp)] (10). White powder. Yield: 80%. mp 178–180 ◦C; anal. C 44.3, H 3.4,
max 2905, 2861, 1598, 1327, 1089
ν
δ
dt, J = 10.6, 7.4 Hz), 1.93 (2H, tp, J = 14.9, 7.5 Hz); 31P-NMR (CDCl3, 162 MHz)
δ
32.11 ppm, 19F-NMR
(CDCl3, 376.5 MHz) δ1 −20.62 (2F, s) ppm; FAB+ m/z 1257 [MAu]+ (35), 933 [C33H30Au2FP2S]+ (100).
5.2. Crystal Structure Determination
A suitable single crystal of compounds 1, 2, 4, 5, 9, and 10 were mounted on a glass fiber and
crystallographic data were collected with an Oxford Diffraction Gemini “A” diffractometer with a
Charge Coupled Device (CCD)area detector with monochromator of graphite for λMoKα = 0.71073 Å.
CrysAlisPro and CrysAlis RED software packages were used for data collection and integration [37].
The double pass scanning method was used to exclude any noise. The collected frames were integrated
using an orientation matrix determined from the narrow frame scans. Final cell constants were
determined by global refinement; collected data were corrected for absorbance using analytical
numeric absorption correction, using a multifaceted crystal model based on expressions upon the Laue
symmetry with equivalent reflections [38]. Structures solutions and refinement were conducted with
the SHELXS-2014 [39] and SHELXL-2014 [40] packages. WinGX v2018.3 [41] software was used to