D. Hollmann et al. / Tetrahedron Letters 49 (2008) 5742–5745
5745
7. For recent examples of transition metal-catalyzed aminations, see: Kienle, M.;
Dubbaka, S. R.; Brade, K.; Knochel, P. Eur. J. Org. Chem. 2007, 4166–4176.
8. (a) Brunet, J. J.; Chu, N. C.; Rodriguez-Zubiri, M. Eur. J. Inorg. Chem. 2007, 4711–
4722; (b) Lee, A. V.; Schafer, L. L. Eur. J. Inorg. Chem. 2007, 2243–2255; (c)
Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407–1420; (d) Hultzsch, K. C.;
Gribkov, D. V.; Hampel, F. J. Organomet. Chem. 2005, 690, 4441–4452; (e) Odom,
A. L. Dalton Trans. 2005, 225–233; (f) Hartwig, J. F. Pure Appl. Chem. 2004, 76,
507–516; (g) Doye, S. Synlett 2004, 1653–1672; (h) Seayad, J.; Tillack, A.;
Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795–813; (i) Beller, M.;
Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O.; Tillack, A.;
Trauthwein, H. Synlett 2002, 1579–1594.
9. Hydroaminomethylation: (a) Moballigh, A.; Buch, C.; Routaboul, L.; Jackstell, R.;
Klein, H.; Spannenberg, A.; Beller, M. Chem. Eur. J. 2007, 13, 1594–1601; (b)
Mueller, K.-S.; Koc, F.; Ricken, S.; Eilbracht, P. Org. Biomol. Chem. 2006, 4, 826–
835; (c) Routaboul, L.; Buch, C.; Klein, H.; Jackstell, R.; Beller, M. Tetrahedron
Lett. 2005, 46, 7401–7405; (d) Moballigh, A.; Seayad, A.; Jackstell, R.; Beller, M.
J. Am. Chem. Soc. 2003, 125, 10311–10318; (e) Eilbracht, P.; Bärfacker, L.; Buss,
C.; Hollmann, C.; Kitsos-Rzychon, B. E.; Kranemann, C. L.; Rische, T.;
Roggenbuck, R.; Schmidt, A. Chem. Rev. 1999, 99, 3329–3366.
such as m/p-toluidine and m/p-anisidine gave the N-arylpyrroli-
dines in 39–67% yield (Table 2, entries 1–4). The pharmaceutically
important 3,4-(methylenedioxy)-aniline gave 58% of the corre-
sponding product (Table 2, entry 5). More problematic is the alkyl-
ation of halogenated anilines. Hence, 4-fluoro-, 4-chloro-, and 4-
bromoaniline yielded the alkylated anilines in low to moderate
yield (Table 2, entries 6–8). In accordance with this observation
4-trifluoromethylaniline showed no reaction even at higher tem-
perature (Table 2, entry 9). Finally, other cyclic amines like piper-
idine and 2-methylpyrrolidine do also react with electron-rich
anilines in good yield (Table 2, entry 11).
In conclusion, we have discovered a novel catalytic reaction of
anilines and cyclic amines. In the presence of the Shvo catalyst
selective activation of the secondary amine takes place and the ali-
phatic nitrogen atom is replaced by the aromatic one. Thus, elec-
tron-rich anilines furnish the corresponding N-aryl heterocycles
in moderate to good yields. Notably, these reactions do not require
any special handling, and do not need exclusion of air or water.
10. (a) Pontes da Costa, A.; Viciano, M.; Sanaú, M.; Merino, S.; Tejeda, J.; Peris, E.;
Royo, B. Organometallics 2008, 27, 1305–1309; (b) Blank, B.; Madalska, M.;
Kempe, R. Adv. Synth. Catal. 2008, 350, 749–758; (c) Hamid, M. H. S. A.;
Williams, J. M. J. Chem. Commun. 2007, 725–727; (d) Hamid, M. H. S. A.;
Williams, J. M. J. Tetrahedron Lett. 2007, 48, 8263–8265; (e) Nordstrøm, L. U.;
Madsen, R. Chem. Commun. 2007, 5034–5036.
11. (a) Fujita, K.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943–1954; (b)
Fujita, K.; Yamaguchi, R. Synlett 2005, 4, 560–571; (c) Fujita, K.; Fujii, T.;
Yamaguchi, R. Org. Lett. 2004, 6, 3525–3528; (d) Fujita, K.; Li, Z.; Ozeki, N.;
Yamaguchi, R. Tetrahedron Lett. 2003, 44, 2687–2690; (e) Fujita, K.; Yamamoto,
K.; Yamaguchi, R. Org. Lett. 2002, 4, 2691–2694.
12. (a) Hollmann, D.; Tillack, A.; Michalik, D.; Jackstell, R.; Beller, M. Chem. Asian J.
2007, 3, 403–410; (b) Tillack, A.; Hollmann, D.; Michalik, D.; Beller, M.
Tetrahedron Lett. 2006, 47, 8881–8885.
13. For a review of borrowing hydrogen methodology, see: Hamid, M. H. S. A.;
Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555–1575.
14. Hollmann, D.; Bähn, S.; Tillack, A.; Beller, M. Angew. Chem., Int. Ed. 2007, 46,
8291–8294.
15. (a) Gerlach, T.; Evers, H.; Melder, J.-P. (BASF Aktiengesellschaft, Germany) WO
2007036499, 2007; (b) Melder, J.-P.; Krug T. (BASF Aktiengesellschaft,
Germany), WO 2006082203, WO 2006082202, 2006; (c) Evers, H.; Melder, J.-
P.; Benisch, C.; Frauenkron, M.; Gerlach, T.; Alba Perez, A.; Nouwen J. (BASF
Aktiengesellschaft, Germany), WO 2005061430, 2005; (d) Oikawa, S.; Ando H.
(Sumitomo Chemical Co., Ltd, Japan), JP 2003171353, 2003.
Acknowledgments
This work has been supported by the State of Mecklenburg-
Western Pomerania, the BMBF (Bundesministerium für Bildung
und Forschung), and the Deutsche Forschungsgemeinschaft (DFG
BE 1931/16-1, Leibniz-price). We thank Mrs. K. Mevius, and Mrs.
S. Buchholz for excellent technical and analytical support.
Supplementary data
Supplementary data associated with this article can be found, in
16. Hollmann, D.; Bähn, S.; Tillack, A.; Beller, M. Chem. Commun. doi:10.1039/
b803114b.
References and notes
17. (a) Karvembu, R.; Prabhakaran, R.; Natarajan, N. Coord. Chem. Rev. 2005, 249,
911–918; (b) Csjernyik, H.; Ell, A. H.; Fadini, L.; Pugin, B.; Bäckvall, J.-E. J. Org.
Chem. 2002, 67, 1657–1662; (c) Shvo, Y.; Czarkie, D.; Rahamim, Y. J. Am. Chem.
Soc. 1986, 108, 7400–7402.
1. Lawrence, S. A. In Amines: Synthesis, Properties, and Applications; Cambridge
University: Cambridge, 2004.
2. (a) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284–287; (b) Clardy, J.;
Fischbach, M. A.; Walsh, C. T. Nature Biotechnol. 2006, 24, 1541–1550.
3. Grue-Sorensen, G.; Spenser, I. D. J. Am. Chem. Soc. 1983, 105, 7401–7404.
18. General procedure for the amination reaction: In an ACE-pressure tube under
an argon atmosphere the Shvo catalyst (0.02 mmol) and pyrrolidine (2 mmol)
were dissolved in tert-amylalcohol (0.5 ml) and 4-methoxyaniline (4 mmol).
The pressure tube was fitted with a Teflon cap and heated at 150 °C for 24 h.
The solvent was removed in vacuo, and the crude alkyl aryl amine product is
easily purified by column chromatography with pentane/ethyl acetate (20:1)
to give N-(4-methoxyphenyl)pyrrolidine in 67% yield (238 mg) as red pale
crystals. 1H NMR (300 MHz, CDCl3): d (ppm) = 1.98–2.03 (m, 4H), 3.22–3.28 (m,
4H), 3.76 (s, 3H), 6.55–6.62 (m, 2H), 6.83–6.88 (m, 2H). 13C NMR (75 MHz,
CDCl3): d (ppm) = 25.4 (CH2), 48.6 (CH2), 56.0 (CH3), 113.0 (CH), 115.1 (CH),
ˇ
ˇ
4. Reductive amination: (a) Malkov, A. V.; Stoncius, S.; Kocovsky, P. Angew. Chem.,
Int. Ed. 2007, 46, 3722–3724; (b) Hughes, G.; Devine, P. N.; Naber, J. R.; O’Shea,
P. D.; Foster, B. S.; McKay, D. J.; Volante, R. P. Angew. Chem., Int. Ed. 2007, 46,
1839–1842; (c) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2006, 128, 84–86; (d) Tararov, V. I.; Boerner, A. Synlett 2005, 203–
211.
5. For recent examples of palladium-catalyzed aminations, see: Beccalli, E. M.;
Broggini, G.; Sottocornola, S.; Martinelli, M. Chem. Rev. 2007, 107, 5318–
5365.
142.9 (Cq), 151.1 (Cq). IR (ATR):
m
(cmÀ1) = 3045w, 2977m, 2958m, 2947m,
2905w, 2863m, 2825m, 1616m, 1510m, 1487m, 1465m, 1439m, 1369m,
1337m, 1282m, 1234m, 1178m, 1155m, 1043m, 1034m, 964m, 869m, 812s,
799m, 743m. MS (EI): m/z (rel. int.) 177 (69), 176 (30), 162 (100), 134 (11), 121
(13), 120 (16). HRMS (EI): calcd for
177.114495. For characterization of the other products see Supplementary
data.
6. For recent examples of copper-catalyzed aminations, see: (a) Monnier, F.;
Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096–3099; Monnier, F.; Taillefer,
M. Angew. Chem. 2008, 120, 3140–3143; (b) Monnier, F.; Taillefer, M. Angew.
Chem., Int. Ed. 2008, 47, 3096–3099; (c) Taillefer, M.; Xia, N.; Ouali, N. Angew.
Chem., Int. Ed. 2007, 46, 934–936; (d) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org.
Chem. 2007, 72, 672–674.
C
11H15O1N1 (M+) 177.11482, found