M.D. Antoine et al. / International Journal of Mass Spectrometry 312 (2012) 24–29
29
by an intact disulfide bond. Therefore, the proposed rapid digestion
Appendix A. Supplementary data
and 18O incorporation method can be implemented for identifica-
tion of these and other types of cross-linked peptides in studies of
protein–protein interactions [38].
Supplementary data associated with this article can be found, in
have been repeated in the PCR thermocycler with very similar
results. For the proteolytic digestion of ubiquitin using trypsin, a
similar degree of protein cleavage is obtained, however, slight vari-
ations in relative ion abundances of cleaved fragments is observed
(Fig. 6). This similarity in proteolysis products indicates that the
same thermal activation mechanisms of protein digestion and
labeling operate in both heating devices. The rate at which the
reaction mixture is initially heated, as well as the final temper-
ature of the reaction mixture affects digestion and 18O labeling
efficiency. One advantage of using a PCR thermocycler in bottom-
up proteomics is its ubiquity and accessibility in multiple labs,
and its affordability, compared to specialized microwave hydrolysis
reactors.
References
[1] P. Demirev, C. Fenselau, J. Mass Spectrom. 43 (2008) 1441.
[2] S.P. Gygi, B. Rist, S.A. Gerber, F. Turecek, M.H. Gelb, R. Aebersold, Nat. Biotechnol.
17 (1999) 994.
[3] Y. Oda, K. Huang, F.R. Cross, D. Cowburn, B.T. Chait, Proc. Natl. Acad. Sci. U. S. A.
96 (1999) 6591.
[4] M.B. Goshe, R.D. Smith, Curr. Opin. Biotechnol. 14 (2003) 101.
[5] S. Julka, F. Regnier, J. Proteome Res. 3 (2004) 350.
[6] S.E. Ong, M. Mann, Nat. Chem. Biol. 1 (2005) 252.
[7] J.L. Capelo, R.J. Carreira, L. Fernandes, C. Lodeiro, H.M. Santos, J. Simal-Gandara,
Talanta 80 (2010) 1476.
[8] H. Loftheim, A. Asberg, L. Reubsaet, J. Chromatogr. A 1217 (2010) 8241.
[9] X.D. Yao, A. Freas, J. Ramirez, P.A. Demirev, C. Fenselau, Anal. Chem. 73 (2001)
2836.
[10] I.I. Stewart, T. Thomson, D. Figeys, Rapid Commun. Mass Spectrom. 15 (2001)
2456.
[11] K.J. Reynolds, X.D. Yao, C. Fenselau, J. Proteome Res. 1 (2002) 27.
[12] M. Miyagi, K.C.S. Rao, Mass Spectrom. Rev. 26 (2007) 121.
[13] C. Fenselau, X. Yao, J. Proteome Res. 8 (2009) 2140.
[14] J. Capelo, R. Carreira, L. Fernandes, C. Lodeiro, H. Santos, J. Simal-Gandara,
Talanta 80 (2010) 1476.
[15] K. Rose, L.A. Savoy, M.G. Simona, R.E. Offord, P. Wingfield, Biochem. J. 250 (1988)
253.
[16] T. Takao, H. Hori, K. Okamoto, A. Harada, M. Kamachi, Y. Shimonishi, Rapid
Commun. Mass Spectrom. 5 (1991) 312.
[17] M. Schnolzer, P. Jedrzejewski, W.D. Lehmann, Electrophoresis 17 (1996) 945.
[18] O.A. Mirgorodskaya, Y.P. Kozmin, M.I. Titov, R. Korner, C.P. Sonksen, P. Roep-
storff, Rapid Commun. Mass Spectrom. 14 (2000) 1226.
[19] X.D. Yao, C. Afonso, C. Fenselau, J. Proteome Res. 2 (2003) 147.
[20] C. Fenselau, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 855 (2007) 14.
[21] M.P. Washburn, D. Wolters, J.R. Yates, Nat. Biotechnol. 19 (2001) 242.
[22] C.J. Mason, T.M. Therneau, J.E. Eckel-Passsow, K.L. Johnson, A.L. Oberg, J.E. Olson,
K.S. Nair, D.C. Muddiman, H.R. Bergen, Mol. Cell. Proteomics 6 (2007) 305.
[23] A. Nefedov, M. Gilski, R. Sadygov, J. Proteome Res. 10 (2011) 2095.
[24] B.N. Pramanik, U.A. Mirza, Y.H. Ing, Y.H. Liu, P.L. Bartner, P.C. Weber, M.K. Bose,
Protein Sci. 11 (2002) 2676.
[25] S.S. Lin, C.H. Wu, M.C. Sun, C.M. Sun, Y.P. Ho, J. Am. Soc. Mass Spectrom. 16
(2005) 581.
[26] O.A. Turapov, G.V. Mukamolova, A.R. Bottrill, M.K. Pangburn, Anal. Chem. 80
(2008) 6093.
[27] D. Suckau, A. Resemann, M. Schuerenberg, P. Hufnagel, J. Franzen, A. Holle, Anal.
Bioanal. Chem. 376 (2003) 952.
[28] B. Schilling, R.H. Row, B.W. Gibson, X. Guo, M.M. Young, J. Am. Soc. Mass Spec-
trom. 14 (2003) 834.
[29] R.J. Carreira, M.S. Diniz, J.L. Capelo, Rapid Commun. Mass Spectrom. 25 (2011)
75.
[30] J.L. Capelo, R. Carreira, M. Diniz, L. Fernandes, M. Galesio, C. Lodeiro, H.M. Santos,
G. Vale, Anal. Chim. Acta 650 (2009) 151.
[31] D. Lopez-Ferrer, J. Capelo, J. Vazquez, J. Proteome Res. 4 (2005) 1569.
[32] D. Lopez-Ferrer, K. Petritis, K. Hixson, T. Heibeck, R. Moore, M. Belov, D. Camp,
R. Smith, J. Proteome Res. 7 (2008) 3276.
4. Conclusions
Two rapid and efficient methods for protein digestion and 18O
incorporation during thermally enhanced trypsinization are com-
pared. Both heating methods are rapid – in most cases significant
digestion and incorporation of two 18O atoms into R-terminated
tryptic peptides is achieved in less than 5 min, thus considerably
reducing the time for bottom-up proteomics including quanti-
tation by 18O labeling. The number of 18O atoms incorporated
correlates well with the type of C-terminal amino acid. This
approach is not only useful for quantitative proteomics labeling
but suggests a simple method for discerning K- from R-terminated
tryptic peptides as well. These experiments provide additional
insights into the mechanism of rapid thermally enhanced trypsin
digestion of intact proteins. We demonstrate that up to two
18O atoms can be efficiently exchanged in R-terminated peptides
even when the exchange step is decoupled from the digestion
step. The described rapid methods for incorporation of 18O atoms
can also be useful in approaches for rapid de novo peptide and
protein sequencing. We plan to further optimize the methods
and to test them with other endoproteases as well as differ-
ent solvent systems. The methods are being modified with the
aim to develop reliable protocols for rapid, high-throughput bot-
tom up proteomics and accurate quantification of protein toxin
bio-agents.
[33] H.Y. Zhong, S.L.L. Marcus, L. Li, J. Am. Soc. Mass Spectrom. 16 (2005) 471.
[34] S. Swatkoski, S. Russell, N. Edwards, C. Fenselau, Anal. Chem. 79 (2007) 654.
[35] T.J. Cornish, M.D. Antoine, S.A. Ecelberger, P.A. Demirev, Anal. Chem. 77 (2005)
3954.
[36] N.A. Hagan, J.S. Lin, M.D. Antoine, T.J. Cornish, R.S. Quizon, B.F. Collins, A.B.
Feldman, P.A. Demirev, MALDI mass spectrometry for rapid detection and
characterization of biological threats, in: C. Fenselau, P. Demirev (Eds.), Rapid
Characterization of Microorganisms by Mass Spectrometry, American Chemical
Society, Washington, DC, 2011, pp. 211–224.
Acknowledgements
This work was supported by Johns Hopkins University Applied
Physics Laboratory (JHU/APL) independent research and devel-
opment funds. M.A. acknowledges partial support by the Stuart
S. Janney Sabbatical Fellowship Program at JHU/APL. We also
thank Charlene Bement, Aldo Nascimento, David Deglau and
Kate Kerbel (JHU/APL summer students) for technical help
in optimizing the microwave and PCR thermocycler digestion
experiments.
[37] M. Erdelyi, A. Gogoll, Synth. Stuttg. 11 (2002) 1592.
[38] J.W. Back, V. Notenboom, L.J. de Koning, A.O. Muijsers, T.K. Sixma, C.G. de Koster,
L. de Jong, Anal. Chem. 74 (2002) 4417.