Journal of the American Chemical Society
Communication
Martin, R. Adv. Synth. Catal. 2011, 353, 1223. (d) Flores-Gaspar, A.;
Martin, R. Org. Synth. 2012, 89, 159.
(12) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-
(30) Interesting, 5an was not obtained upon exposure of cyclobutyl
phenyl ketone under our Fe-catalyzed protocol. This result suggests
that the skeletal rearrangement of 1an does not proceed via an initial
[1,2]-aryl shift followed by ring-expansion, but rather via [1,2]-alkyl
shift.
(31) Control experiments in the presence of HBr, TfOH, pTsOH·
H2O, and TFA showed very low or no conversion of 1a to 4a, thus
indicating that the reaction is not mediated by traces of Brønsted acid.
See Supporting Information for details.
(32) (a) Suda, K.; Baba, K.; Nakajima, S.-I.; Takanami, T. Chem.
Commun. 2002, 2570. (b) Gudla, V.; Balamurugan, R. Tetrahedron
Lett. 2012, 53, 5243. (c) Vyas, D. J.; Larionov, E.; Besnard, C.;
́ ́
Guenee, L.; Mazet, C. J. Am. Chem. Soc. 2013, 135, 6177.
(d) Meinwald, J.; Labana, S. S.; Chadha, M. S. J. Am. Chem. Soc.
1963, 85, 582.
VCH: Weinheim, Germany, 2006.
(13) For a review dealing with skeletal rearrangements via [1,2]-
carbon-carbon shift, see: Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, Chapter 4,
pp 705−1014.
(14) For reviews on Fe-catalyzed reactions, see: (a) Bolm, C.; Legros,
J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (b) Correa, A.;
García-Mancheno, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108.
̃
(c) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500.
̈
(d) Furstner, A.; Martin, R. Chem. Lett. 2005, 34, 624.
(15) See Supporting Information for details.
̈
(16) For a selection of catalytic transformations utilizing FeBr3, see:
(a) Zhang, T.; Bao, W. J. Org. Chem. 2013, 78, 1317. (b) Xu, T.; Yang,
Q.; Li, D.; Dong, J.; Yu, Z.; Li, Y. Chem.Eur. J. 2010, 16, 9264.
̀
(c) Marcos, R.; Rodriguez-Escrich, C.; Herrerías, C. I.; Pericas, M. A. J.
Am. Chem. Soc. 2008, 130, 16838. (d) Giraud, A.; PRovot, O.; Peyrat,
J.-F.; Alami, M.; Brion, J.-D. Tetrahedron 2006, 62, 7667. (e) Zhang,
D.; Ready, J. M. J. Am. Chem. Soc. 2006, 128, 15050. (f) Usuda, H.;
Kuramochi, A.; Kanai, M.; Shibasaki, M. Org. Lett. 2004, 6, 4387 and
references therein.
(17) FeBr3 (98% purity, Sigma Aldrich) was utilized. Identical
reactivity was found with other FeBr3 sources from Strem (99%
purity) and Alfa Aesar (98% purity). Atomic absortion spectroscopic
analysis showed that no significant traces of other transition metals
were present (ppm). The most abundant of these elements, however,
were tested in our screening, and we did not find any remarkable
catalytic behavior. See Supporting Information for details.
(18) No reaction took place in the absence of catalyst at 80, 110, or
even 150 °C.
(33) For Fe-catalyzed conversion of epoxides to aldehydes, see:
(a) Picione, J.; Mahmood, S. J.; Gill, A.; Hilliard, M.; Hossain, M.
Tetrahedron Lett. 1998, 39, 2681. (b) Erturk, E.; Gollu, M.; Demir, A.
̈
̈
̈
S. Tetrahedron 2010, 66, 2373.
(34) For additional mechanistic studies, see Supporting Information .
(35) For other regiodivergent metal-catalyzed [1,2]-shifts via
cycloisomerization processes, see: (a) Dudnik, A. S.; Xia, Y.; Li, Y.;
Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. (b) Davies, P. W.;
Martin, N. Org. Lett. 2009, 11, 2293. (c) Dudnik, A. S.; Sromek, A. W.;
Rubina, M.; Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. J. Am. Chem. Soc.
2008, 130, 1440. (d) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int.
Ed. 2007, 46, 5195.
(19) This result is in sharp contrast with the ability of other catalytic
[1,2]-aryl shifts in which electron-rich aromatic motifs are preferen-
tially migrated. See for example: Sun, K.; Liu, S.; Bec, P. M.; Driver, T.
G. Angew. Chem., Int. Ed. 2011, 50, 1702.
(20) It is worth noting that the use of α-aryl acid chlorides or α-aryl
Weinreb amides as substrates led to decomposition. In any case, we
observed even traces of a migratory event.
(21) For selectivity control in migratory events, see: (a) Gerrand, W.;
Hudson, H. R. Chem. Rev. 1965, 65, 697. (b) Crone, B.; Kirsch, S. F.
Chem.Eur. J. 2008, 14, 3514. (c) Overman, L. E.; Pennington, L. D.
J. Org. Chem. 2003, 68, 7143.
(22) McKenzie, A.; Dennler, W. S. J. Chem. Soc. 1926, 1596.
(23) Aryl groups typically have a better migratory aptitude in
Wagner−Meerwein-type rearrangements due to the delocalization of
the positive charge into the aromatic ring. However, steric and
electronic effects might have an influence on the migration event. See
for example: (a) Brown, H. C.; Kim, C. J. J. Am. Chem. Soc. 1968, 90,
2082. (b) Winstein, S.; Morse, B. K.; Grunwald, E.; Schreiber, K. C.;
Corse, J. J. Am. Chem. Soc. 1952, 74, 1113. (c) Nakamura, K.;
Osamura, Y. J. Am. Chem. Soc. 1993, 115, 9112. (d) Nakamura, K.;
Osamura, Y. Tetrahedron Lett. 1990, 31, 251.
(24) For recent procedures invoking a switch of migratory aptitude,
see: (a) Ref 7b. (b) Suda, K.; Kikkawa, T.; Nakajima, S.-I.; Takanami,
T. J. Am. Chem. Soc. 2004, 126, 9554 and references therein.
(25) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013,
135, 620.
(26) We observed that the [1,2]-alkyl shift (Table 3) was significantly
faster than the [1,2]-aryl shift (Table 2). Such observation is in line
with the Hammond postulate that suggests a preferential carbon−
carbon bond cleavage for the most stable carbocation intermediate.
(27) Related substrates possessing a dimethylamino or a piperidine
substituent in the para position resulted in recovered starting material.
(28) The low yields of 5al−m are attributed to the decomposition
found when subjecting 1al−m to our optimized conditions.
(29) The reaction of a α-cyclopropyl or a α-cyclopentyl aryl aldehyde
led to decomposition.
D
dx.doi.org/10.1021/ja4068707 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX