A. Zarguil et al. / Tetrahedron Letters 49 (2008) 5883–5886
5885
2006, 45, 8235–8238; (c) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem. 2002, 114, 2708–2711; (d) Yan, Z. Y.; Zhao, Y. B.; Fan, M. J.;
Liu, W.-M.; Liang, Y. M. Tetrahedron 2005, 61, 9331–9337; (e) Wu, Y. M.; Deng,
J.; Li, Y. L.; Chen, Q. Y. Synthesis 2005, 1314–1318; (f) Rogue, D. R.; Neill, J. L.;
Antoon, J. W.; Stevens, E. P. Synthesis 2005, 2497–2502; (g) Barral, K.;
Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809–1811; (h) Kamijo, S.;
Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786–7787; (i)
Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. J. Org.
Chem. 2005, 70, 6526–6529.
N CN
NH
R
C
X
Y
NH2
NH2
N CN
OEt
R
C
+
NH2
2
X
2. (a) Li, W.; Wu, Q.; Yu, Y.; Luo, M.; Hu, L.; Gu, Y.; Niu, F.; Hu, J. Spectrochim. Acta,
Part A 2004, 60, 2343–2354; (b) Findeisen, K.; Santel, H. J.; Eur. Pat. App. Ep 412,
358 CA, 114, 185517 n, 1991.
Y
9
3. Padmanabraham, D.; Regupathy, D. Adv. Plant Reprod. Physiol. 1976, 254–261.
4. Hiasa, Y.; Ohshima, M.; Kitahori, Y. Carcinogenesis 1982, 3, 381–384.
5. (a) Hardman, J.; Limbird, L.; Gilman, A. Goodman and Gilman’s The
Pharmacological Basis of Therapeutics, 9th ed.; McGraw-Hill: New York, 1996.
p 988; (b) Gennaro Remington, A. R. In The Science and Practice of Pharmacy;
Mack Easton: PA, 1995; Vol. II, p 1327; (c) Richardson, K; Whittle, P. J. Eur. Pat.
Appl. Ep. 115, 416, 1984; (d) Richardson, K.; Whittle, P. J. Chem. Abstr. 1984,
101, 230544; (e) Ammermann, E.; Loecher, F.; Lorenz, G.; Janseen, B.; Karbach,
S.; Meyer, N. Brighton Crop Prot. Conf. Pests. Dis 1990, 2, 407–414; (f) Heindel, N.
D.; Reid, J. R. J. Heterocycl. Chem. 1980, 17, 1087–1088.
X
N
N
R
Y
H
7
6. (a) Mernari, B.; Elattari, H.; Traisnel, M.; Bentiss, F.; Langrenee, M. Corros. Sci.
1998, 40, 391–399; (b) Bentiss, F.; Langrenee, M.; Traisnel, M.; Hornez, J. C.
Corros. Sci. 1999, 41, 789–803.
Scheme 4. Synthesis of benzimidazoles 7.
7. Imidates 1: To a solution of iminoester (10 mmol), prepared according to the
method described by Pinner,16 in ethanol and nitrile (15/15 mL) was bubbled by
dry HCl. Then, the iminoester was free of its salt, in 50 mL of ether, by a solution
of sodium carbonate. Phenylthioisocyanate (10 mmol) was added dropwise at
0 °C in the thus formed iminoester. The mixture was stirred for 2 h and the ether
was evaporated. The imidate 1 was recrystallised from petroleum ether.
Table 3
Prepared benzimidazoles 7, amidrazoles 11 and imidazoles 8
Product
R
X
Y
Yielda (%)
Mp (°C)
For example, 1 (R = C6H5, R2 = C6H5), Yield = 80%, mp = 113 °C; IR (CHCl3):
m
1120, 1655, 3395 cmÀ1
.
1H NMR (CDCl3) d ppm: 9.95 (m, 1H, NH), 7.10–8.0 (m,
7a
7b
7c
7d
8a
8b
11a
11b
CH3
C6H5
CH3
C6H5
CH3
C6H5
CH3
H
H
CH3
CH3
—
—
—
—
H
H
CH3
CH3
—
—
—
—
79
68
69
65
75
69
78
65
171 (lit.15 170)
291 (lit.15 291)
10H, Ar), 4.35 (q, 2H, CH2), 1.35 (t, 3H, CH3).
Compound 1 (R = 4-MeC6H4, R2 = C6H5), Yield = 77%, mp = 135 °C; IR (CHCl3):
m
251
221
267
183
199
181
1120, 1655, 3395 cmÀ1.1H NMR (CDCl3) d ppm: 9.60 (m, 1H, NH), 7.00–7.50 (m,
9H, Ar), 4.30 (q, 2H, CH2), 1.32 (t, 3H, CH3), 2.30 (s, 3H, CH3). Imidates 2: A
mixture of orthoester (0.12 mol), cyanamide (0.1 mol) and few drops of acetic
acid was refluxed during 6 h and distilled then under vacuum (14 mmHg).
For example,
2220 cmÀ1 1H NMR (CDCl3) d ppm: 4.01 (q, 2H, CH2), 2.02 (s, 3H, CH3), 1.25
(t, 3H, CH3).Compound 2 (R = C2H5), Yield = 84%, Eb = 120 °C; IR (CHCl3): 1655,
2220 cmÀ1 1H NMR (CDCl3) d ppm: 4.05 (q, 2H, CH2), 1.95 (q, 2H, CH2), 1.25 (t,
3H, CH3), 1.20 (t, 3H, CH3).
2 (R = CH3), Yield = 78%, Eb = 110 °C; IR (CHCl3): m 1655,
C6H5
.
m
a
Yields of isolated, purified products. The solid compounds can be recrystallised
.
from me.
8. To a solution of imidates 1 or 2 (10 mmol) in methanol (40 mL) were added
hydrazine derivatives (10 mmol). The solution was refluxed for 2 h and
concentrated under reduced pressure to afford 3-amino-1,2,4-triazoles 3.
m .
1540, 3435 cmÀ1 1H NMR (DMSO-d6) d ppm:
NH2
NH
R1
For example, 3b, IR (CHCl3):
N
N
X
Y
7.0–7.60 (m, 9H, Ar), 6.33 (s, 1H, NH), 3.67 (s, 1H, NH), 2.30 (s, 3H, CH3). Anal.
Calcd: C, 72.00; N, 22.40; H, 5.60. Found: C, 71.58; N, 22.51; H, 5.61.
Compound 3h, IR (CHCl3):
m .
1560, 3440 cmÀ1 1H NMR (CDCl3) d ppm: 7.10–
7.50 (m, 10H, Ar), 6.45 (s, 1H, NH), 3.93 (s, 2H, CH2), 3.50 (s, 3H, CH3). Anal.
Calcd: C, 72.00; N, 22.40; H, 5.60. Found: C, 71.58; N, 22.51; H, 5.61.
Compound 3o, IR (CHCl3): m .
1580, 2240, 3310, 3400 cmÀ1 1H NMR (DMSO-d6) d
10
ppm: 4.65 (s, 2H, NH2), 4.27 (t, 2H, CH2), 2.85 (t, 2H, CH2), 2.52 (q, 2H, CH2),
1.23 (t, 3H, CH3). Anal. Calcd: C, 72.00; N, 22.40; H, 5.60. Found: C, 71.58; N,
22.51; H, 5.61.
Scheme 5. Benzotriazepines 10.
9. Baccar, B.; Mathis, F. C.R. Acad. Sci. Paris 1965, 26, 174–177.
10. A mixture of imidate 2 (10 mmol), 2-cyano ethylhydrazine (10 mmol) and
methanol (40 mL) was stirred during one day at 25 °C. After evaporation of the
solvent under reduced pressure, the precipitated product 5 was recrystallised
from methanol.
NH2
N CN
OEt
N CN
25 °C, 4 h
R
R
+
For example, 5 (R = C6H5), Yield = 69%, mp = 104 °C; IR (CHCl3):
m 2142, 2223,
MeOH
NHCH2CH2NH2
3320, 3380 cmÀ1 1H NMR (CDCl3) d ppm: 9.95 (m, 1H, NH), 6.90–7.40 (m, 5H,
.
NH2
Ar), 4.66 (s, 1H, NH), 2.43 (s, 1H, NH), 3.96 (t, 2H, CH2), 2.73 (t, 2H, CH2).
11. A mixture of imidate 2 (10 mmol), 2-cyano ethylhydrazine (10 mmol) and
toluene (40 mL) was stirred efficiently under reflux for 48 h. The solution was
concentrated under reduced pressure to afford triazolopyrimidines 6.
2
11
reflux, 28 h
m .
1600, 3200, 3480 cmÀ1 1H NMR (CDCl3) d ppm:
MeOH
For example, 6a, IR (CHCl3):
4.70 (s, 2H, NH2), 4.20 (t, 2H, CH2), 3.90 (t, 2H, CH2), 2.20 (s, 3H, CH3). 13C NMR:
18.4 (s, CH3), 159.0 (s, CH3C@N), 152.6 (s, C@N), 39.4 (t, 1J = 124.1 Hz, NCH2),
31.4 (t, 1J = 124.3 Hz, CH2C=N), 163.2 (s, C–NH2). HMRS calcd for C6H9N5 (M+Å):
151.085; found, 151.087.
N
R
Compound 6b, IR (CHCl3):
m .
1610, 3200, 3480 cmÀ1 1H NMR (CDCl3) d ppm:
N
H
4.80 (s, 2H, NH2), 4.20 (t, 2H, CH2), 3.90 (t, 2H, CH2), 1.90 (q, 2H, CH2), 1.20 (t,
3H, CH3). HMRS calcd for C7H11N5 (M+Å): 165.101; found, 165.103.
12. To a solution of o-phenylenediamine (10 mmol) in methanol (40 mL) was added
a solution of imidate 2 (10 mmol). The solution was then stirred under reflux for
10 h and concentrated under reduced pressure to afford benzimidazoles 7.
8
Scheme 6. Synthesis of amidrazones 11 and imidazoles 8.
For example, 7a, IR (KBr):
m .
1620, 3100, 3220 cmÀ1 1H NMR (CDCl3) d ppm:
7.01–7.50 (m, 4H, Ar), 6.66 (s, 1H, NH), 2.51 (s, 3H, CH3). 13C NMR: 19.1 (s, CH3);
153.1 (s, CCH3); 115.2 123.0, 123.2, 138.2, 193.1 (Ar-ring C). HMRS calcd for
C8H8N2 (M+Å): 132.068; found, 132.070.
References and notes
Compound 7c, IR (KBr): m .
1605, 3100, 3300 cmÀ1 1H NMR (CDCl3) d ppm: 6.40–
7.23 (s, 2H, Ar), 5.70 (s, 1H, NH), 2.30 (s, 3H, CH3), 2.20 (s, 3H, CH3). HMRS calcd
1. (a) Barluenga, J.; Valdes, C.; Beltran, G.; Escribano, M.; Aznar, F. Angew. Chem.,
Int. Ed. 2006, 45, 6893–6896; (b) Lipshutz, B. H.; Taft, B. R. Angew. Chem., Int. Ed.
for C10H12N2 (M+Å): 160.100; found, 160.097.