5204 Inorganic Chemistry, Vol. 49, No. 11, 2010
Abouelatta et al.
FT-IR spectrophotometer. UV-vis spectra were recorded on a
Varian Cary 50 spectrophotometer. CD spectral data were
recorded on a Chirascan circular dichroism spectrophotometer.
Reactions were performed under ambient atmosphere. Oxygen-
and moisture-sensitive reactions were performed inside an
MBraun Labmaster 130 glovebox. Molecular modeling studies
were performed with the program MacPyMol.
cc-pVTZ basis set. The reference in the NMR spectrum was TMS
(tetramethylsilane) calculated usingthe same functional andbasis
set. Calculations of the UV-vis spectra utilized time-dependent
density functional theory (TD-DFT)44-50 with the long-range
corrected LC-ωPBE functional51-54 and the cc-pVTZ basis set.
All calculations were performed using the development version of
the Gaussian software suite.55 Overlap studies with calculated
structures were performed with MacPyMOL (see Supporting
Information).
Computational Details. All five isomers of the cobalt-, zinc-,
and iron-containing structures were fully optimized using the
TPSS pure functional30 with an all-electron cc-pVTZ basis
set31-35 on the ligands and metals. Equilibrium geometries were
confirmed using vibrational frequency analysis. For compar-
ison, optimizations where also carried out with the B3LYP
hybrid functional.36-38 Single-point calculations were per-
formed on the optimized structure of the ligand without the
metal halide using the TPSS pure density functional with the
cc-pVTZ basis set. NBO39 analysis was used to look at the nature
of the molecular orbitals of the calculated structures. NMR
calculations were performed using the gauge-independent atomic
orbital (GIAO) method40-43 with the TPSS functional and the
X-ray Crystallography. Diffraction data were measured on a
Bruker X8 APEX-II kappa geometry diffractometer with Mo
radiation and a graphite monochromator. Frames were col-
lected at 100 K with the detector at 40 mm and 0.3 degrees
between each frame and were recorded for 10 s. APEX-II56
and SHELX57 software were used in the collection and refine-
ment of the models.
Crystals of [Co(Bn-CDPy3)Cl]Cl2 (5) appeared as violet
plates; 92 682 reflections were measured, yielding 17 503 unique
data (Rint = 0.052). Hydrogen atoms in the complex were placed
in calculated positions. The asymmetric unit contains two
independent Co complexes and a solvent region consisting of
four chloride ions, six water solvates, and one ethanol molecule.
Of these, the ethanol and one water molecule were highly
disordered, lying near the inversion center, and a reasonable
chemical refinement was not possible. Spek’s PLATON pro-
gram was employed to account for approximately 66 e- via
SQUEEZE.58 The highest ΔF peak (∼2 e-) was located in the
vicinity of the disordered solvent.
(30) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev.
Lett. 2003, 91, 146401.
(31) Woon, D. E.; Dunning, T. H. J. J. Chem. Phys. 1993, 98, 1358–1371.
(32) Kendall, R. A.; Dunning, T. H. J.; Harrison, R. J. J. Chem. Phys.
1992, 96, 6796–6806.
(33) Dunning, T. H. J. J. Chem. Phys. 1989, 90, 1007–1023.
(34) Peterson, K. A.; Woon, D. E.; Dunning, T. H. J. J. Chem. Phys. 1994,
100, 7410–7415.
Crystals of [Fe(Bn-CDPy3)Cl]ClO4 (8) were yellow and irre-
gular fragments. 69 185 points were integrated and merged into
13 686 independent data with Rint = 0.0343. Hydrogen atoms
were placed in calculated positions. The asymmetric unit contains
one Fe complex, one perchlorate counter ion, one equivalent of
acetonitrile and one disordered equivalent of diethyl ether. The
diethyl ether disorder was handled by assigning two sets of
positions and holding these partial occupancy positions isotropic
during refinement with their bond distances fixed. The highest
difference map peaks (1-1.4 e-) were in the vicinity of this
disordered solvate.
(R,R)-N1-Benzyl-N1,N2,N2-tris(pyridin-2-ylmethyl)cyclohexane-
1,2-diamine (Bn-CDPy3, 1). Enantioenriched 1 was synthesized
according to the reported procedure starting from the enan-
tioenriched starting material (1R,2R)-(-)-1,2-cyclohexane-
diamine (99% ee).29 1H and 13C NMR and mass spectral
data for enantioenriched 1 matched data for the racemic
compound. [R]D = 51.1 (c 1.0, MeOH).
(35) Wilson, A. K.; van Mourik, T.; Dunning, T. H. J. Mol. Struct. 1996,
388, 339–349.
(36) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(37) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(38) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989,
157, 200–206.
(39) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.
QCPE Bull. 1990, 10, 58.
(40) McWeeny, R. Phys. Rev. 1962, 126, 1028.
(41) Wilson, S. M.; Wiberg, K. B.; Cheeseman, J. R.; Frisch, M. J.;
Vaccaro, P. H. J. Phys. Chem. A 2005, 109, 11752–11764.
(42) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem.
Phys. 1996, 104, 5497–5509.
(43) Ditchfield, R. Mol. Phys. 1974, 27, 789–807.
(44) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454–
464.
(45) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem.
Phys. 1998, 108, 4439–4449.
(46) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998,
109, 8218–8224.
(47) Van Caillie, C.; Amos, R. D. Chem. Phys. Lett. 1999, 308, 249–255.
(48) Van Caillie, C.; Amos, R. D. Chem. Phys. Lett. 2000, 317, 159–164.
(49) Furche, F.; Ahlrichs, R. J. Chem. Phys. 2002, 117, 7433–7447.
(50) Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.;
Barone, V. J. Chem. Phys. 2006, 124, 094107–094115.
(51) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K.
J. Chem. Phys. 2004, 120, 8425–8433.
(52) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109–.
(53) Vydrov, O. A.; Scuseria, G. E.; Perdew, J. P. J. Chem. Phys. 2007,
126, 154109–.
[Co(Bn-CDPy3)Cl]Cl2 (5 5H2O). The cobalt(III) complex
3
[Co(Bn-CDPy3)Cl]Cl2 5H2O was prepared according to literature
3
1
using the enantiopure (R,R)-Bn-CDPy3, 1.29 Mass, H and 13C
NMR, and UV-vis spectral data matched with a racemic complex.
[Fe(Bn-CDPy3)Cl]Cl (7). A solution of ligand 1 (0.20 g, 0.418
mmol) in DCM (12 mL) was stirred with FeCl2 (0.053 g, 0.418
mmol) inside the glovebox for 4 h, resulting in the formation of a
yellow solution. The solution was filtered and concentrated
inside the glovebox. The resultant golden yellow solid was
recrystallized by vapor diffusion from MeCN/Et2O inside the
(54) Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem.
Phys. 2006, 125, 074106–074109.
(55) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson,
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.;
Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.;
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,
R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Parandekar, P. V.;
Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.;
Cioslowski, J.; Fox, D. J. Gaussian, Revision H.01 ed.; Gaussian, Inc.:
Wallingford, CT, 2009.
glovebox, yielding yellow needle crystals of 7 3H2O (0.16 g,
3
63%). Mp = 155-156 °C; χmol = 4.90 μB. 1H NMR (CD3OD):
δ 160.2, 140.5, 108.4, 99.1, 96.4, 89.1, 57.4, 56.6, 52.4, 49.5, 41.6,
40.0, 26.1, 24.4, 19.2, 15.4, 11.5, 9.4, 7.5, 4.5, 3.0, 2.5, 1.9, 1.7, 1.3,
-0.8, -7.4, -21.3, -24.5. IR (thin film): 3411(s), 3060(w),
3027(w), 2933(s), 2860(m), 2359(w), 1602(s), 1570(m), 1482(s),
1443(s), 1384(w), 1352(w), 1316(w), 1296(w), 1245(w), 1204(m),
1155(m), 1099(m), 1077(m), 1052(m), 1016(m), 978(w), 960(w),
(56) APEX II collection and processing programs; Bruker AXS Inc.:
Madison WI, 2009.
(57) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.
(58) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13.