58
G. Labbé et al. / Journal of Inorganic Biochemistry 112 (2012) 49–58
LaBonte, D.C. Lamb, N. Lan, H. Liang, H. Liao, L. Liu, C. Luo, M. Lussier, R. Mao, P.
Menard, S.L. Ooi, J.L. Revuelta, C.J. Roberts, M. Rose, P. Ross-Macdonald, B.
Scherens, G. Schimmack, B. Shafer, D.D. Shoemaker, S. Sookhai-Mahadeo, R.K.
Storms, J.N. Strathern, G. Valle, M. Voet, G. Volckaert, C.Y. Wang, T.R. Ward, J.
Wilhelmy, E.A. Winzeler, Y. Yang, G. Yen, E. Youngman, K. Yu, H. Bussey, J.D.
Boeke, M. Snyder, P. Philippsen, R.W. Davis, M. Johnston, Nature 418 (2002)
387–391.
ion in a bidentate fashion while the metal is chelated by the active site
zinc ligands, but indicate that several inhibitors can alter the zinc en-
vironment. In order to eliminate the possibility of zinc removal from
the enzyme, the first generation inhibitory compounds produced in
this study could be modified by the addition of R-groups extending
out of the FBP binding pocket to promote stronger interactions and
improved specificity for the Class II FBP aldolase from different path-
ogens. Longer-chain FBP analogues containing metal-chelating func-
tions have been shown recently to be very potent inhibitors of the
S. cerevisiae, C. albicans, H. pylori, M. tuberculosis, M. bovis and Y. pestis
Class II aldolases [18,21]. The use of metal-chelating substrate ana-
logues, like the ones reported in the present study, is therefore very
promising for the development of new drugs targeting the Class II
FBP aldolase.
[10] M.A. Jacobs, A. Alwood, I. Thaipisuttikul, D. Spencer, E. Haugen, S. Ernst, O. Will, R.
Kaul, C. Raymond, R. Levy, L. Chun-Rong, D. Guenthner, D. Bovee, M.V. Olson, C.
Manoil, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 14339–14344.
[11] K. Kobayashi, S.D. Ehrlich, A. Albertini, G. Amati, K.K. Andersen, M. Arnaud, K. Asai,
S. Ashikaga, S. Aymerich, P. Bessieres, F. Boland, S.C. Brignell, S. Bron, K. Bunai, J.
Chapuis, L.C. Christiansen, A. Danchin, M. Debarbouille, E. Dervyn, E. Deuerling,
K. Devine, S.K. Devine, O. Dreesen, J. Errington, S. Fillinger, S.J. Foster, Y. Fujita,
A. Galizzi, R. Gardan, C. Eschevins, T. Fukushima, K. Haga, C.R. Harwood, M.
Hecker, D. Hosoya, M.F. Hullo, H. Kakeshita, D. Karamata, Y. Kasahara, F.
Kawamura, K. Koga, P. Koski, R. Kuwana, D. Imamura, M. Ishimaru, S. Ishikawa,
I. Ishio, D. Le Coq, A. Masson, C. Mauel, R. Meima, R.P. Mellado, A. Moir, S.
Moriya, E. Nagakawa, H. Nanamiya, S. Nakai, P. Nygaard, M. Ogura, T. Ohanan,
M. O'Reilly, M. O'Rourke, Z. Pragai, H.M. Pooley, G. Rapoport, J.P. Rawlins, L.A.
Rivas, C. Rivolta, A. Sadaie, Y. Sadaie, M. Sarvas, T. Sato, H.H. Saxild, E. Scanlan,
W. Schumann, J.F. Seegers, J. Sekiguchi, A. Sekowska, S.J. Seror, M. Simon, P.
Stragier, R. Studer, H. Takamatsu, T. Tanaka, M. Takeuchi, H.B. Thomaides, V.
Vagner, J.M. van Dijl, K. Watabe, A. Wipat, H. Yamamoto, M. Yamamoto, Y.
Yamamoto, K. Yamane, K. Yata, K. Yoshida, H. Yoshikawa, U. Zuber, N.
Ogasawara, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 4678–4683.
[12] C.M. Sassetti, D.H. Boyd, E.J. Rubin, Mol. Microbiol. 48 (2003) 77–84.
[13] U.F. Wehmeier, FEMS Microbiol. Lett. 197 (2001) 53–58.
6. Abbreviations
BSA
bovine serum albumin
DHAP
DMPS
DPA
FBP
dihydroxyacetone phosphate
2,3-dimercaptopropane-1-sulfonate
dipicolinic acid
Fructose 1,6-bisphosphate
[14] M. de la Paz Santangelo, P.M. Gest, M.E. Guerin, M. Coincon, H. Pham, G. Ryan, S.E.
Puckett, J.S. Spencer, M. Gonzalez-Juarrero, R. Daher, A.J. Lenaerts, D.
Schnappinger, M. Therisod, S. Ehrt, J. Sygusch, M. Jackson, J. Biol. Chem. 286
(2011) 40219–40231.
GAP
H.E.I.
PGH
glyceraldehyde-3-phosphate
High Energy Intermediate (enediolate form of DHAP)
phosphoglycolohydroxamic acid
[15] A. Bock, F.C. Neidhardt, J. Bacteriol. 92 (1966) 470–476.
[16] D.A. Schneider, R.L. Gourse, J. Bacteriol. 185 (2003) 6192–6194.
[17] C.H. Su, J.P. Merlie, H. Goldfine, J. Bacteriol. 122 (1975) 565–569.
[18] M. Fonvielle, M. Coincon, R. Daher, N. Desbenoit, K. Kosieradzka, N. Barilone, B.
Gicquel, J. Sygusch, M. Jackson, M. Therisod, Chemistry 14 (2008) 8521–8529.
[19] M. Fonvielle, P. Weber, K. Dabkowska, M. Therisod, Bioorg. Med. Chem. Lett. 14
(2004) 2923–2926.
[20] S. Gavalda, R. Braga, C. Dax, A. Vigroux, C. Blonski, Bioorg. Med. Chem. Lett. 15
(2005) 5375–5377.
[21] R. Daher, M. Coincon, M. Fonvielle, P.M. Gest, M.E. Guerin, M. Jackson, J. Sygusch,
M. Therisod, J. Med. Chem. 53 (2010) 7836–7842.
Acknowledgements
G.L. is the grateful recipient of an Ontario Graduate Scholarship, a
UW President's Graduate Scholarship, and a UW Provost's/Faculty of
Science Graduate Women's Incentive Fund. This research was sup-
ported by the Natural Science and Engineering Research Council of
Canada Grants 18351, 927-2008 and 235003.
[22] G. Rosenblum, S.O. Meroueh, O. Kleifeld, S. Brown, S.P. Singson, R. Fridman, S.
Mobashery, I. Sagi, J. Biol. Chem. 278 (2003) 27009–27015.
[23] A.T. Colak, F. Colak, O.Z. Yesilel, O. Buyukgungor, J. Mol. Struct. 936 (2009) 67–74.
[24] Y. Kidani, J. Hirose, H. Koike, J. Biochem. 79 (1976) 43–51.
[25] Y. Kidani, J. Hirose, J. Biochem. 81 (1977) 1383–1391.
Appendix A. Supplementary data
[26] Y. Pocker, C.T. Fong, Biochemistry 19 (1980) 2045–2050.
[27] G. Labbe, J. Bezaire, S.d. Groot, C. How, T. Rasmusson, J. Yaeck, E. Jervis, G.I.
Dmitrienko, J. Guy Guillemette, Protein Expr. Purif. 51 (2007) 110–119.
[28] P.C. Ramsaywak, G. Labbe, S. Siemann, G.I. Dmitrienko, J.G. Guillemette, Protein
Expr. Purif. 37 (2004) 220–228.
Supplementary data to this article can be found online at doi:10.
References
[29] G. Labbe, S. de Groot, T. Rasmusson, G. Milojevic, G.I. Dmitrienko, J.G. Guillemette,
Protein Expr. Purif. 80 (2011) 224–233.
[1] D.J. Lewis, G. Lowe, J. Chem. Soc. Chem. Commun. (1973) 713–715.
[2] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K.A. Datsenko, M.
Tomita, B.L. Wanner, H. Mori, Mol. Syst. Biol. 2 (2006) 2006.0008.
[30] J.F. Morrison, C.T. Walsh, Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 201–301.
[31] C.L. Tsou, Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381–436.
[32] O. Trott, A.J. Olson, J. Comput. Chem. 31 (2010) 455–461.
[3] G. Lamichhane, M. Zignol, N.J. Blades, D.E. Geiman, A. Dougherty, J. Grosset, K.W.
Broman, W.R. Bishai, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 7213–7218.
[4] N.T. Liberati, J.M. Urbach, S. Miyata, D.G. Lee, E. Drenkard, G. Wu, J. Villanueva, T.
Wei, F.M. Ausubel, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 2833–2838.
[5] S.D. Pegan, K. Rukseree, S.G. Franzblau, A.D. Mesecar, J. Mol. Biol. 386 (2009)
1038–1053.
[33] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J.
Olson, J. Comput. Chem. 30 (2009) 2785–2791.
[34] X. Hu, W.H. Shelver, J. Mol. Graph. Model. 22 (2003) 115–126.
[35] S. Siemann, A.J. Clarke, T. Viswanatha, G.I. Dmitrienko, Biochemistry 42 (2003)
1673–1683.
[36] D.S. Auld, Methods Enzymol. 248 (1995) 228–242.
[6] J.H. Song, K.S. Ko, J.Y. Lee, J.Y. Baek, W.S. Oh, H.S. Yoon, J.Y. Jeong, J. Chun, Mol.
Cells 19 (2005) 365–374.
[37] D.J. Lewis, G. Lowe, Eur. J. Biochem. 80 (1977) 119–133.
[38] Z. Li, Z. Liu, D.W. Cho, J. Zou, M. Gong, R.M. Breece, A. Galkin, L. Li, H. Zhao, G.D.
Maestas, D.L. Tierney, O. Herzberg, D. Dunaway-Mariano, P.S. Mariano, J. Inorg.
Biochem. 105 (2010) 509–517.
[39] N.S. Blom, S. Tetreault, R. Coulombe, J. Sygusch, Nat. Struct. Biol.
856–862.
[40] T. Izard, J. Sygusch, J. Biol. Chem. 279 (2004) 11825–11833.
[41] D.R. Hall, L.E. Kemp, G.A. Leonard, K. Marshall, A. Berry, W.N. Hunter, Acta Crystal-
logr. D: Biol. Crystallogr. 59 (2003) 611–614.
[7] A. Rodaki, T. Young, A.J. Brown, Eukaryot. Cell 5 (2006) 1371–1377.
[8] S.Y. Gerdes, M.D. Scholle, J.W. Campbell, G. Balazsi, E. Ravasz, M.D. Daugherty, A.L.
Somera, N.C. Kyrpides, I. Anderson, M.S. Gelfand, A. Bhattacharya, V. Kapatral, M.
D'Souza, M.V. Baev, Y. Grechkin, F. Mseeh, M.Y. Fonstein, R. Overbeek, A.L.
Barabasi, Z.N. Oltvai, A.L. Osterman, J. Bacteriol. 185 (2003) 5673–5684.
[9] G. Giaever, A.M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, S. Dow, A. Lucau-Danila,
K. Anderson, B. Andre, A.P. Arkin, A. Astromoff, M. El Bakkoury, R. Bangham, R.
Benito, S. Brachat, S. Campanaro, M. Curtiss, K. Davis, A. Deutschbauer, K.D. Entian,
P. Flaherty, F. Foury, D.J. Garfinkel, M. Gerstein, D. Gotte, U. Guldener, J.H.
Hegemann, S. Hempel, Z. Herman, D.F. Jaramillo, D.E. Kelly, S.L. Kelly, P. Kotter, D.
3 (1996)
[42] M. St-Jean, C. Blonski, J. Sygusch, Biochemistry 48 (2009) 4528–4537.