Fig. 3 Variation of the observed relaxation rate with oF for [LnꢀL3]
(Ln = Tb, Dy, Ho and Tm, 295 K, 1 mM complex, D2O). Solid lines:
global least-squares fits to relaxation theory equation.
relative signal intensities. Such behaviour augurs well for
chemical shift imaging studies using such complexes.
We thank the EPSRC, the Nuffield Foundation (DGS
summer studentship), the Royal Society, Prof. Ross Maxwell
for samples of biofluids and the EC network DIMI for support.
Scheme 3
profiles that implicitly examine the motion of the Gd–water
proton vector.19 Few independent measurements of the overall
Notes and references
tumbling rate of the complex have been made but studies of 17
O
1 H. R. Kalbitzer, G. Rohr, E. Nowak, R. S. Goody, W. Kuhn and
H. Zimmermann, NMR Biomed, 1992, 5, 347.
2 F. Khan, I. Kuprov, T. D. Craggs, P. J. Hore and S. E. Jackson, J.
Am. Chem. Soc., 2006, 128, 10729.
3 G. Papeo, P. Giordano, M. G. Brasca, F. Buzzo, D. Caronni, F.
Ciprandi, N. Mongelli, M. Veronesi, A. Vulpetti and C. Dalvit, J.
Am. Chem. Soc., 2007, 129, 5665.
2
VT NMR (water motion) or ligand 13C or H relaxation time
analysis (2H labelled ligand) to derive tr values have been
reported.20 The values are in the range 160–265 ps at 298 K
for complexes of similar molecular volume, and were system-
atically higher than those derived by examining water proton
motion or relaxation.
4 J. W. Peng, J. Magn. Reson., 2001, 153, 32.
5 L. D. Stegman, A. Rehemtulla, B. Beattie, E. Kievit, T. S.
Lawrence, R. G. Blasberg, J. G. Tjuvajev and B. D. Ross, Proc.
Natl. Acad. Sci. U. S. A., 1999, 96, 9821.
6 J.-x. Yu, V. D. Kodibagkar, W. Cui and R. P. Mason, Curr. Med.
Chem., 2005, 12, 819.
7 Y. G. Gakh, A. A. Gakh and A. M. Gronenborn, Magn. Reson.
Chem., 2000, 38, 551.
8 W. E. Hull and B. D. Sykes, Biochemistry, 1974, 13, 3431.
9 V. D. Kodibagkar, J. X. Yu, L. Liu, H. P. Hetherington and R. P.
Mason, Magn. Reson. Imaging, 2006, 24, 959.
In summary, two new classes of pH-sensitive 19F-labelled
paramagnetic complexes have been defined. With holmium(III),
40 ppm ([HoꢀL4]) and 18.3 ppm ([HoꢀL1]) changes in chemical
shift were observed between acidic and basic forms. [HoꢀL1]
belongs to the ‘fast-exchange’ type and changes its 19F chemi-
cal shift with pH, whereas [HoꢀL4] is a ‘slow-exchange’ ratio-
metric probe, responding to pH changes by variation of
10 J. X. Yu, L. Liu, V. D. Kodibagkar, W. N. Cui and R. P. Mason,
Bioorg. Med. Chem., 2006, 14, 326.
11 I. Bertini, F. Capozzi, C. Luchinat, G. Nicastro and Z. C. Xia, J.
Phys. Chem., 1993, 97, 6351.
12 I. Bertini, C. Luchinat and G. Parigi, Prog. Nucl. Magn. Reson.
Spectrosc., 2002, 40, 249.
13 P. K. Senanayake, A. M. Kenwright, D. Parker and S. K. van der
Hoorn, Chem. Commun., 2007, 2923.
14 M. P. Lowe and D. Parker, Chem. Commun., 2000, 707.
15 M. P. Lowe, D. Parker, O. Reany, S. Aime, M. Botta, G.
Castellano, E. Gianolio and R. Pagliarin, J. Am. Chem. Soc.,
2001, 123, 7601.
16 S. Aime, A. Barge, M. Botta, J. A. K. Howard, R. Kataky, M. P.
Lowe, J. M. Moloney, D. Parker and A. S. de Sousa, Chem.
Commun., 1999, 1047.
17 Y. Bretonniere, M. J. Cann, D. Parker and R. J. Slater, Org.
Biomol. Chem., 2004, 2, 1624.
18 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,
Theor. Gen. Crystallogr., 1976, 32, 751.
19 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem.
Rev., 1999, 99, 2293.
20 H. Lamers, F. Maton, D. Pubanz, M. W. Van Laren, H. Van
Bekkum, A. E. Merbach, R. N. Muller and J. A. Peters, Inorg.
Chem., 1997, 36, 2527.
Fig. 2 Variation of the ratio (smaller/greater) of 19F signal integrals
of [HoꢀL4H] and [HoꢀL4]ꢁ with pH (295 K, 0.5 mM complex in 0.1 M
aq. NaCl). Solid lines: least-squares fits to the slow-exchange
acid–base equilibrium equation for the NMR intensity ratio.
ꢃc
This journal is The Royal Society of Chemistry 2008
2516 | Chem. Commun., 2008, 2514–2516