(d, 1H, J = 4 Hz), 4.07 (d, 1H, J = 9.3 Hz), 4.08–3.99 (m, 1H),
3.80–3.64 (m, 7H), 3.57 (d, 1H, J = 3.3 Hz), 3.41–3.33 (m, 4H);
dC (125 MHz; 10% D2O in CD3OD) 103.84, 92.18, 82.20, 77.62,
74.18, 72.88, 71.69, 69.76, 62.41, 61.99, 60.64; HRMS(ESI): calcd
for C12H22O11Na 365.1060 [M + Na]+, found 365.1062; [a]D20 = −67
(c = 1, H2O).
6 K. J. Laidler and P. S. Bunting, The Chemical Kinetics of Enzyme Action,
Clarendon Press, Oxford, 2nd edn, 1973.
7 J. Ma´trai, W. Lammens, A. Jonckheer, K. L. Roy, A. Rabijns, W. V. d.
Ende and M. D. Maeyer, Proteins: Struct., Funct., Bioinf., 2008, 71,
552.
8 A. P. Minton, J. Biol. Chem., 2001, 276, 10577.
9 M. J. Blandmer, J. B. F. N. Engberts, P. T. Gleesonc and J. C. R. Reis,
Chem. Soc. Rev., 2005, 34, 440.
10 G. Scatchard, W. J. Hamer and S. E. Wood, J. Am. Chem. Soc., 1938,
60, 3061.
Invertase kinetics with L-sucrose and other crowding agents
11 R. H. Stokes and R. A. Robinson, J. Phys. Chem., 1966, 70, 2126.
12 (a) J. C. Lee and S. N. Timasheff, J. Biol. Chem., 1981, 256, 7193;
(b) S. N. Timasheff, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 9721.
13 B. S. Kendrick, B. S. Chang, T. Arakawa, B. Peterson, T. W. Randolph,
M. C. Manning and J. F. Carpenter, Proc. Natl. Acad. Sci. U. S. A.,
1997, 94, 11917.
14 (a) Y. Ito, H. Ando, H. Wada, T. Kawai, Y. Ohnish and Y. Nakahara,
Tetrahedron, 2001, 57, 4123; (b) A. J. Fairbanks, Synlett, 2003, 6,
1945.
15 (a) M. R. Pratt, C. D. Leigh and C. R. Bertozzi, Org. Lett., 2003,
5, 3185; (b) M. Gelin, V. Ferrie`res, M. Lefeuvre and D. Plusquellec,
Eur. J. Org. Chem., 2003, 1285.
16 (a) C. Krog-Jensen and S. Oscarson, J. Org. Chem., 1998, 63, 1780; (b) S.
Oscarson, in Top. Curr. Chem., ed. H. Driguez and J. Thiem, Springer
Verlag, Berlin, 1997, vol. 186, p. 171.
Activity measurements were performed at optimum substrate
concentrations ([S0] = 60 mM) in the presence of crowding agents,
using a microscale version of the dinitrosalicylate (DNS) assay
for reducing sugars.31 kcat and KM values were obtained using low
substrate concentrations ([S0] = 10–60 mM) at constant solute
fraction, based on the combined wt% of D-sucrose and crowding
agent. In a typical assay, a 40 lL aqueous solution containing
D-sucrose (120 mM) and L-sucrose (0–880 mM) was diluted in a
test tube with 30 lL of 0.05 M sodium acetate (pH 4.7) buffer and
heated to 55 ◦C. 10 lL of a yeast invertase stock solution (0.3 lM)
was added and the reaction mixture was incubated for 10 min at
55 ◦C, then quenched by the addition of DNS reagent (1000 lL)
and heated to near reflux for 5 min. The solution was quickly
cooled to RT and diluted twofold, followed by an absorbance
measurement at 540 nm.
17 S.-K. Seo, M. L. McClintock and A. Wei, ChemBioChem, 2006, 7,
1959.
18 See Supporting Information for more details‡.
19 T. G. A. Lonhienne and D. J. Winzor, Biochemistry, 2001, 40, 9618.
20 M. Jiang and Z. Guo, J. Am. Chem. Soc., 2007, 129, 730.
21 N. Asaad and J. B. F. N. Engberts, J. Am. Chem. Soc., 2003, 125, 6874.
22 D. D. L. Minh, C.-e. Chang, J. Trylska, V. Tozzini and J. A. McCammon,
J. Am. Chem. Soc., 2006, 128, 6006.
Acknowledgements
23 V. A. Parsegian, R. P. Rand and D. C. Rau, in Methods in Enzymology,
ed. M. L. Johnson and G. K. Ackers, Academic Press, San Diego, 1995,
vol. 259, p. 43.
24 We note that osmotic pressure has the opposite effect to hydrostatic
pressure, which increases the activity of invertase and other enzymes.
This effect has been attributed to a negative volume of activation. See:
H. Eyring, F. H. Johnson and R. L. Gensler, J. Phys. Chem., 1946, 50,
453.
We gratefully acknowledge the National Institutes of Health (GM-
06982) for financial support, and Mr Emmanuel Johnson and Prof.
Kavita Shah (Purdue Univ.) for their generous assistance with
enzyme purification.
Notes and references
25 Least-squares analyses based on other substrate inhibition models did
1 (a) J. B. S. Haldane, Enzymes, Longmans, London, 1930, p. 84;
(b) D. R. P. Murray, Biochem. J., 1930, 24, 1890.
2 A. D. McLaren, Enzymologia, 1963, 26, 1.
not improve the significance or quality of fit6.
26 A. Sturm and G.-Q. Tang, Trends Plant Sci., 1999, 4, 401.
27 K. Koch, Curr. Opin. Plant Biol., 2004, 7, 235.
3 L. Michaelis and M. L. Menten, Biochem. Z., 1913, 49, 333.
4 R. Torres, C. Mateo, M. Fuentes, J. Palomo, C. Ortiz, R. Ferna´ndez-
Lafuente, J. Guisan, A. Tam and M. Daminati, Biotechnol. Prog., 2002,
18, 1221.
5 L. Bowski, R. Saini, D. Y. Ryu and W. R. Vieth, Biotechnol. Bioeng.,
1971, 13, 641.
28 L. I. Sergeeva, J. J. B. Keurentjes, L. Bentsink, J. Vonk, L. H. W. van der
Plas, M. Koornneef and D. Vreugdenhil, Proc. Natl. Acad. Sci. U. S. A.,
2006, 103, 2994.
29 F. P. Boulineau and A. Wei, J. Org. Chem., 2004, 69, 3391.
30 M.-X. Zhao and Y. Shi, J. Org. Chem., 2006, 71, 5377.
31 G. L. Miller, Anal. Chem., 1959, 31, 426.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 3362–3365 | 3365
©