10.1002/anie.201713285
Angewandte Chemie International Edition
COMMUNICATION
In summary, we have developed a borane-catalyzed
carbocyclization of homoallylic alcohols and dihydro-2H-pyrans
to produce syn-1,2-disubstituted cyclobutanes in high yields and
with excellent selectivity. Mechanistic studies indicate that
stepwise dual ring-closing pathways are operative, while the
condensative intramoelcular cyclization is turnover limiting.
Tuning the electronic nature of C4-aryl groups of homoallyl
substrates can alter the reaction path to lead to cyclopropanes.
Acknowledgements
This research was supported by the Institute for Basic Science
(IBS-R010-D1) in Korea.
Conflict of interest
Scheme 4. DFT-derived energetics of the B(C6F5)3-mediated carbocyclization
of (E)-3-phenylpent-3-en-1-ol with Et3SiH (All structures were optimized at the
M06/6-31G** level of theory).
The authors declare no conflict of interest.
Keywords: Carbocyclization • Cyclobutanes • Homoallylic
alcohols •Anchimeric assistance • Stepwise dual pathways
Starting from intermediate B, the reaction may proceed
through either intermolecular hydridation to form a cyclopropane
product E or intramolecular ring-expansion to generate a
cyclobutane intermediate C. The barriers for both possibilities are
too low at 5.6 and 3.8 kcal/mol, respectively, to infer any
significant difference in the rate of these steps. Instead, it is more
meaningful that the hydridation to proceed to the left hand side
in Scheme 4 is an intermolecular process, whereas the ring-
expansion to the right hand side is an entropically beneficial
intramolecular event. Therefore, C at –10.4 kcal/mol should be
formed exclusively. The intermediate C may then be attacked by
a borohydride to give the product D, traversing another low
barrier of 5.4 kcal/mol. The hydridation from the top side is
estimated to be preferred by ~3 kcal/mol over the bottom side
attack to give the syn-selective product D.
[1]
a) D. Belluš, B. Ernst, Angew. Chem. Int. Ed. 1988, 27, 797; Angew.
Chem. 1988, 100, 820; b) J. C. Namyslo, D. E. Kaufmann, Chem. Rev.
2003, 103, 1485; c) E. Lee-Ruff, G. Mladenova, Chem. Rev. 2003, 103,
1449.
[2]
a) A. Sergeiko, V. V. Poroikov, L. O. Hanuš, V. M. Dembitsky, Open Med.
Chem. J. 2008, 2, 26; b) V. M. Dembitsky, J. Nat. Med. 2008, 62, 1; c) E.
M. Carreira, T. C. Fessard, Chem. Rev. 2014, 114, 8257; d) C. M. Marson,
Chem. Soc. Rev. 2011, 40, 5514; e) R. D. Taylor, M. MacCoss, A. D. G.
Lawson, J. Med. Chem. 2014, 57, 5845; f) K. A. Brameld, B. Kuhn, D. C.
Reuter, M. Stahl, J. Chem. Inf. Model. 2008, 48, 1; g) B. Heasley, Curr.
Org. Chem. 2014, 18, 641.
[3]
For selected reviews for catalytic [2+2] cycloadditions: a) T. Bach, J. P.
Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000; Angew. Chem. 2011, 129,
4401; b) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003;
c) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322; d) M. T. Crimmins, Chem. Rev. 1988, 88, 1453; e) J. M. R.
Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102.
a) R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1969, 8,
781; b) R. G. Salomon, K. Folting, W. E. Streib, J. K. Kochi, J. Am. Chem.
Soc. 1974, 96, 1145; c) J. M. Hoyt, V. A. Schmidt, A. M. Tondreau, P. J.
Chirik, Science 2015, 349, 960.
a) E. Lee-Ruff, In The Chemistry of Cyclobutanes; Z. Rappoport, J. F.
Liebman, Eds.; John Wiley & Sons: Chichester, U. K., 2005; b) T. Hudlicky,
J. W. Reed, In Comprehensive Organic Synthesis; B. M. Trost, I. Fleming,
Eds.; Pergamon Press: Oxford, U. K., 1991; c) T. Hudlicky, T. M. Kutchan,
S. M. Naqvi, Org. React. 1985, 33, 247; d) N. Iwasawa, K. Narasaka, Top.
Curr. Chem. 2000, 207, 69; e) J. Muzart, Tetrahedron 2008, 64, 5815.
a) B. M. Trost, T. Yasukata, J. Am. Chem. Soc. 2001, 123, 7162; (b) F.
Kleinbeck, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178.
a) H. Ito, Y. Kosaka, K. Nonoyama, Y. Sasaki, M. Sawamura, Angew.
Chem. Int. Ed. 2008, 47, 7424; Angew. Chem. 2008, 120, 7534; b) H. Ito,
T. Toyoda, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 5990; c) G.
Zhong, S. Kunii, Y. Kosaka, M. Sawamura, H. Ito, J. Am. Chem. Soc. 2010,
132, 11440; d) K. Kubota, E. Yamamoto, H. Ito, J. Am. Chem. Soc. 2013,
135, 2635; e) Y.-M. Wang, N. C. Bruno, Á . L. Placeres, S. Zhu, S. L.
Buchwald, J. Am. Chem. Soc. 2015, 137, 10524.
[4]
[5]
[6]
[7]
Scheme 5. Electronic effects of the C-4 aryl substituents on product
distribution.
[8]
[9]
C. K. Hazra, N. Gandhamsetty, S. Park, S. Chang, Nat. Commun. 2016,
7, 13431.
a) L. L. Adduci, T. A. Bender, J. A. Dabrowski, M. R. Gagné, Nat. Chem.
2015, 7, 576; b) T. A. Bender, J. A. Dabrowski, H. Zhong, M. R. Gagné,
Org. Lett. 2016, 18, 4120; c) T. A. Bender, J. A. Dabrowski, M. R. Gagné,
ACS Catal. 2016, 6, 8399.
An additional mechanistic assumption was that if the reaction
pathway involves a ring-expansion process (path C),[22,23] we
may see a product distribution between cyclopropanes and
cyclobutanes and that the ratio will be susceptible to the
electronic variation of substrates. Indeed, when electronically
variable diaryl-3-butenols (4) were subjected to the standard
conditions, reductive carbocyclization smoothly proceeded to
afford a mixture of cyclobutanes and cyclopropanes in varied
ratios (Scheme 5). Significantly, substrates bearing electron-rich
C4-aryl groups were cyclized leading to cyclopropanes mainly.
These data further support the conclusion that (i) path C is
operative, and (ii) hydride transfer to the electron-rich
cyclopropylcarbinyl cation is facile. Additionally, our computed
mechanistic model explains the electronic effect of aryl groups
(see the S.I.).
[10] a) D. J. Cram, J. Am. Chem. Soc. 1949, 71, 3863; b) S. Winstein, C. R.
Lindegren, H. Marshall, L. L. Ingraham, J. Am. Chem. Soc. 1953, 75, 147;
c) I. Chatterjee, D. Porwal, M. Oestreich, Angew. Chem. Int. Ed. 2017,
56, 3389; Angew. Chem. 2017, 129, 3438.
[11] G. L. Larson, J. L. Fry in Organic Reactions, Vol. 71, (Ed.: S. E. Denmark),
John Wiley & Sons, U.S. pp. 104, 2008.
[12] A gram-scale reaction of (E)-1a-[OSi] with EtMe2SiH (1.1 equiv) in the
presence of B(C6F5)3 (0.1 mol %) produced 3a in 83% isolated yield (1.38
g) with >95% of syn-selectivity within 0.5 h at 23 oC (see the S.I.).
[13] The use of PhSiH3 as as reductant instead of EtMe2SiH in the
cyclobutanation of free homoallylic alcohols led to slightly better yields
and syn-selectivity (see the S.I.).
[14] V. Gevorgyan, M. Rubin, S. Benson, J.-X. Liu, Y. Yamamoto, J. Org.
Chem. 2000, 65, 6179.
4
This article is protected by copyright. All rights reserved.