X. Sun et al. / Tetrahedron Letters 49 (2008) 6195–6197
6197
3. (a) Ren, H. J.; Dunet, G.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2007, 129, 5376;
(b) Lutz, C.; Jones, P.; Knochel, P. Synthesis 1999, 312; (c) Dosa, P. I.; Fu, G. C. J.
Am. Chem. Soc. 1998, 120, 445; (d) Noyori, R.; Kitamura, M. Angew. Chem., Int.
Ed. 1991, 30, 49; (e) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
4. (a) Hanson, M. V.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 10775; (b) Kjonaas, R.
A.; Vawter, E. J. J. Org. Chem. 1986, 51, 3993; (c) Lipshutz, B. H.; Wood, M. R.;
Tirado, R. J. Am. Chem. Soc. 1995, 117, 6126.
5. (a) Chiev, K. P.; Roland, S.; Mangeney, P. Tetrahedron: Asymmetry 2002, 13,
2205; (b) Iwai, T.; Ito, T.; Mizuno, T.; Ishino, Y. Tetrahedron Lett. 2004, 45,
1083.
6. Esquivias, J.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2002, 46, 9257.
7. (a) Wang, J.-X.; Fu, Y.; Hu, Y.-L. Angew. Chem., Int. Ed. 2002, 41, 2757; (b) Hu,
Y.-L.; Yu, J.-H.; Yang, S. Y.; Wang, J.-X.; Yin, Y.-Q. Synlett 1998, 1213.
8. Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. Rev. 1998, 27, 13.
9. (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984; (b)
Mortan, D.; Stockman, R. A. Tetrahedron 2006, 62, 8869; (c) Lin, G.-Q.; Xu,
M.-H.; Zhong, Y.-W.; Sun, X.-W. Acc. Chem. Res. 2008, 41, 831–840.
10. (a) Beenen, M. A.; Weix, D. J.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 6304; (b)
Dai, H.-X.; Lu, X.-Y. Org. Lett. 2007, 9, 3077; (c) Davis, F. A.; McCoull, W. J. Org.
Chem. 1999, 64, 3396.
groups of compound 3c under acidic condition (HCl/MeOH)
followed by ester hydrolysis (LiOH), an important product tert-
leucine would be afforded in 72% yield (Scheme 2). The
spectroscopic and physical data of the synthetic tert-leucine were
in excellent agreement with those reported.13 Thus, this manipula-
tion further unambiguously confirmed the structures of unex-
pected 1,3-migration products. A plausible reaction pathway is
shown in Scheme 3. We proposed that the plausible reaction
mechanism may be involved in a radical addition pathway, since
the CH2FG radical could be easily formed.14 It was reasoned
that the stabilized CH2FG radical by Ni(acac)2 attacks the sulfur
and the single electron on the oxygen atom comes back to re-form
the double bond of the sulfoxide. Meanwhile, the tert-Butyl radical
generated attacks the imine to form a new C–C bond. Further study
of the mechanism is underway.
In summary, nickel-catalyzed organozinc-promoted unex-
pected 1,3-migration of tert-butyl from sulfur to carbon in N-tert-
butanesulfinyl iminoacetates had been described. The structures
of these 1,3-migration products had been confirmed by converting
to the corresponding tert-leucine. The further utilization of these
1,3-migration products will be reported in due course.
11. Zhou, P.; Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003.
12. General procedure: To a solution of ethyl N-(tert-butanesulfinyl)iminoacetate
(205 mg, 1 mmol) and Ni(acac)2 (10 mol %) in anhydrous THF (10 mL) was
added a freshly prepared organozinc reagent (2.5 mL, 1 M in THF) at À20 °C
under argon atmosphere. Then the mixtures were allowed to warm to room
temperature. After being further stirred for another 6 h, the reaction mixture
was quenched with saturated aqueous NH4Cl (4 mL) and diluted with EtOAc
(30 mL) and brine (10 mL). The organic layer was separated and the aqueous
phase was extracted with EtOAc (20 mL Â 3). The combined organic layers
were washed with brine (10 mL Â 3), dried over anhydrous Na2SO4, filtered,
and concentrated. The residue was purified by chromatography on silica gel
(EtOAc/petroleum ether) to give mixtures of compounds. Compound 3c (the
ratio is 1:1 based on the GC value) as a colorless oil; IR (KBr) 3244, 2960, 2932,
Acknowledgments
This work was financially supported by the Natural Science
Foundation of China (NSFC 20702007, 20772017) and Fudan
University (EYH1615012). The authors also thank Dr. Hang-Qing
Dong for helpful suggestions.
2866, 1732, 1463, 1364, 1315, 1216, 1151 cmÀ1 1H NMR (CDCl3, 300 MHz) d
;
4.69 (d, J = 7.5 Hz, 1H), 4.45 (d, J = 7.8 Hz, 1H), 4.26–4.17 (m, 4H), 3.64 (d,
J = 10.8 Hz, 1H), 3.54 (d, J = 9.6 Hz, 1H), 2.84–2.69 (m, 4H), 1.72–1.61 (m, 4H),
1.51–1.41 (m, 4H), 1.29 (m, 6H), 1.05–0.94 (m, 24H); 13C NMR (CDCl3,
100 MHz) d 173.0, 172.6, 66.5, 61.3, 61.2, 60.9, 56.2, 54.3, 34.9, 34.0, 26.7, 26.3,
25.2, 25.1, 21.9, 21.8, 14.2, 14.1, 13.8, 13.7; MS (ESI): 286 (M+Na+); HRESIMS
calcd for (C12H25NNaO3S + Na+): 286.1455, found 286.1448.
References and notes
13. Boesten, W. H. J.; Seerden, J.-P. G.; de Lange, B.; Dielemans, H. J. A.; Elsenberg,
H. L. M.; Kaptein, B.; Moody, H. M.; Kellogg, R. M.; Broxterman, Q. B. Org. Lett.
2001, 3, 1121.
14. (a) Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 5743; (b) Cougnon, F.; Feray,
L.; Bazin, S.; Bertrand, M. P. Tetrahedron 2007, 63, 11959; (c) Phapale, V. B.;
Buñuel, E.; Garc´ıa –Iglesias, M.; Cárdenas, D. J. Angew. Chem., Int. Ed. 2007, 46,
8790; (d) Giboulot, S.; Pérez-Luna, A.; Botuha, C.; Ferreira, F.; Chemla, F.
Tetrahedron Lett. 2008, 49, 3963.
1. Cain, D. In Carbon–Carbon Bond Formation; Augustine, R. L., Ed.; M. Dekker: New
York, 1979; Vol. 1, pp 86–249.
2. (a) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726; (b) Giovannini, R.;
Stüdemann, T.; Devasa-Gayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999,
64, 3544; (c) Lipshutz, B. H.; Blomgren, P. A.; Kim, S.-K. Tetrahedron Lett. 1999,
40, 197; (d) Avédissian, H.; Berillon, L.; Cahiez, G.; Knochel, P. Tetrahedron Lett.
1998, 39, 6163; (e) Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79; (f) Huo,
S.-Q. Org. Lett. 2003, 5, 423.