L. D. S. Yadav et al. / Tetrahedron Letters 49 (2008) 6360–6363
6363
46, 1489–1491; (h) Earle, M. J.; Katdare, S. P.; Seddon, K. R. Org. Lett. 2004, 6,
707–710.
OH
OH2
O
N
COOMe
18. (a) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.;
Davis, J. H., Jr J. Am. Chem. Soc. 2002, 124, 5962–5963; (b) Welton, T. Chem.
Rev. 1999, 99, 2071–2084; (c) Sheldon, R. Chem. Commun. 2001, 23, 2399–
2407; (d) Zhu, H. P.; Yang, F.; Tang, J.; He, M. Y. Green Chem. 2003, 5, 38–39; (e)
Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Green Chem. 2004, 6, 75–
77.
19. (a) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron Lett. 2007, 48,
4899–4902. and 8037–8039; (b) Yadav, L. D. S.; Patel, R.; Rai, V. K.; Srivastava,
V. P. Tetrahedron Lett. 2007, 48, 7793–7795; (c) Yadav, L. D. S.; Rai, A.; Rai, V. K.;
Awasthi, C. Synlett 2007, 1905–1908; (d) Yadav, L. D. S.; Yadav, S.; Rai, V. K.
Green Chem. 2006, 8, 455–458; (e) Yadav, L. D. S.; Rai, V. K.; Yadav, S.
Tetrahedron 2006, 62, 5464–5468.
20. Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2008, 49, 3142–3146.
21. (a) Kamimura, A.; Mitsudera, H.; Asano, S.; Kidera, S.; Kakehi, A. J. Org. Chem.
1999, 64, 6353–6360; (b) Albertshofer, K.; Thayumanavan, R.; Utsumi, N.;
Tanaka, F.; Barbas, C. F., III. Tetrahedron Lett. 2007, 48, 693–696.
22. Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723–4725.
23. Lancaster, N. L.; Salter, P. A.; Welton, T.; Young, G. B. J. Org. Chem. 2002, 67,
8855–8861.
COOMe
[Hmim]HSO4
NaNO3
O
O
1
COOMe
COOMe
O
TMSCN
-HNO2
O
4
H
N
O
O
CN
COOMe
O
5
Scheme 3. A plausible mechanism for the formation of 5.
24. Mehdi, H.; Bodor, A.; Lantos, D.; Horváth, I. T.; de Vas, D. E.; Binnemans, K. J.
Org. Chem. 2007, 72, 1517–1524.
Acknowledgement
25. General procedure for the synthesis of b-cyano ketones 3: To
a mixture of
[bmim]Br (3 mL) and water (0.5 mL) was added IBX (1 mmol). The resulting
mixture was stirred at rt for 5–10 min, and BH adduct 1 (1 mmol) was added.
The reaction mixture was stirred at rt for 1 h. After complete oxidation
(monitored by TLC), TMSCN (1.5 mmol) was added and the reaction mixture
was further stirred at rt for 2–3 h (Table 1). Then, it was diluted with saturated
aqueous NaHCO3 solution (10 mL) and extracted with ether (3 Â 10 mL). The
combined organic layers were washed with brine solution, dried over MgSO4
and evaporated under reduced pressure. The resulting product was purified by
silica gel column chromatography using hexane/ethyl acetate (9:1) as eluent to
afford an analytically pure sample of 3. After isolation of the product, the
remaining aqueous layer containing the ionic liquid was washed with ether
(2 Â 10 mL) to remove any organic impurity and filtered. The filtrate was
extracted with CH2Cl2 (3 Â 10 mL), dried over MgSO4 and evaporated under
reduced pressure to afford [bmim]Br, which was used in subsequent runs
without further purification. Physical data of representative compounds.
Compound 3a: Yellowish solid, yield 83%, mp 95–97 °C. IR (KBr) mmax 3060,
We sincerely thank SAIF, Punjab University, Chandigarh, for
providing microanalyses and spectra.
References and notes
1. (a) Martin, D. L.; Olsen, R. W. GABA in the Nervous System: The View at Fifty
Years; Lippincott Williams & Wilkins: Philadelphia, 2000; (b) Alger, B. E.;
Möhler, H. Pharmacology of GABA and Glycine Neurotransmission; Springer:
Berlin, New York, 2001; (c) Krogsgaard-Larsen, P.; Froelund, B.; Kristiansen, U.;
Frydenvang, K.; Ebert, B. Eur. J. Pharm. Sci. 1997, 5, 355–384; (d) Krogsgaard-
Larsen, P.; Froelund, B.; Joergensen, F. S.; Schousboe, A. J. Med. Chem. 1994, 37,
2489–2505.
2. Ros, F. J. Chem. Res. 2000, 2000, 124–125.
.
2862, 2238, 1743, 1691, 1602, 1584, 1455, 695, 760 cmÀ1 1H NMR (400 MHz;
3. (a) Hayashi, M.; Kawabata, H.; Inoue, K. Carbohydr. Res. 2000, 325, 68–71; (b)
Hayashi, M.; Kawabata, H.; Shimono, S.; Kakehi, A. Tetrahedron Lett. 2000, 41,
2591–2594; (c) Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130,
6072–6073; (d) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,
126, 9928; (e) Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2005, 127, 514–515.
4. (a) Dahuron, N.; Langlois, N. Synlett 1996, 51–52; (b) Benedetti, F.; Berti, F.;
Garau, G.; Martinuzzi, I.; Norbedo, S. Eur. J. Org. Chem. 2003, 1973–1982.
5. Gerrits, P. G.; Marcus, J.; Birikaki, L.; vander Gen, A. Tetrahedron: Asymmetry
2001, 12, 971–974.
CDCl3/TMS): d 2.91 (dd, 1H, J = 12.8, 8.4 Hz, b-H), 3.19 (dd, 1H, J = 12.8, 3.5 Hz,
b-H), 4.10 (dd, 1H, J = 8.4, 3.5 Hz,
a-H), 3.68 (s, 3H, COOMe), 7.32-7.94 (m,
5Harom). 13C NMR (100 MHz; CDCl3/TMS): d 14.5, 50.1, 52.2, 116.5, 128.1, 129.1,
130.8, 138.2, 169.8, 198.8. EIMS (m/z): 217 (M+). Anal. Calcd for C12H11NO3: C,
66.35; H, 5.10; N, 6.45. Found C, 65.97; H, 4.80; N, 6.76. Compound 3f:
Yellowish solid, yield 82%, mp 142–144 °C. IR (KBr) mmax 2993, 2851, 2248,
2240, 1697, 1605, 1540, 1343, 853 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d
.
2.85 (dd, 1H, J = 12.9, 8.5 Hz, b-H), 3.12 (dd, 1H, J = 12.9, 3.5 Hz, b-H), 3.61 (s,
3H, OMe), 4.10 (dd, 1H, J = 8.5, 3.5 Hz, a-H), 7.10 (d, 2H, J = 7.9 Hz, Harom), 7.68
(d, 2H, J = 7.9 Hz, Harom). 13C NMR (100 MHz; CDCl3/TMS): d 11.9, 36.4, 57.6,
115.0, 117.3, 118.2, 129.4, 130.3, 168.0, 198.2. EIMS (m/z): 214 (M+). Anal.
Calcd for C12H10N2O2: C, 67.28; H, 4.71; N, 13.08. Found C, 67.58; H, 4.38; N,
13.40.
6. Utsugi, M.; Kamada, Y.; Miyamoto, H.; Nakada, M. Tetrahedron Lett. 2007, 48,
6868–6872.
7. Nagata, W.; Yoshioka, M.; Murakami, M. J. Am. Chem. Soc. 1972, 94, 4654–4672.
8. (a) Baeza, A.; Najera, C.; Retamosa, M de G.; Sansano, J. M. Synthesis 2005,
2787–2797; (b) He, B.; Li, Y.; Feng, X.; Zhang, G. Synlett 2004, 1776–1778; (c)
Higuchi, K.; Onaka, M.; Izumi, Y. Bull. Chem. Soc. Jpn. 1993, 66, 2016–2032.
9. Iida, H.; Moromizata, T.; Hamana, H.; Matsumoto, K. Tetrahedron Lett. 2007, 48,
2037–2039.
10. (a) Aggarwal, V. K.; Patin, A.; Tisserand, S. Org. Lett. 2005, 7, 2555–2557; (b)
Wasnaire, P.; Wiaux, M.; Touillaux, R.; Markó, I. E. Tetrahedron Lett. 2006, 47,
985–989; (c) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2005, 46,
5387–5391; (d) Luo, S.; Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 555–
558; (e) Yeo, J. E.; Yang, X.; Kim, H. J.; Koo, S. Chem. Commun. 2004, 236–237; (f)
Racker, R.; Doring, K.; Reiser, O. J. Org. Chem. 2000, 65, 6932–6939; (g) Lee, K.
Y.; Gowrisankar, S.; Kim, N. Bull. Korean Chem. Soc. 2005, 26, 1481–1490; (h)
Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627–645.
11. (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–892;
(b) Basavaiah, D.; Rao, V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581–1582.
12. (a) Yadav, J. S.; Reddy, B. V. S.; Singh, A. P.; Basak, A. K. Synthesis 2008, 469–473;
(b) Yadav, J. S.; Reddy, B. V. S.; Singh, A. P.; Basak, A. K. Tetrahedron Lett. 2007,
48, 4169–4172. and 7546–7548.
13. (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: San
Diego, 1997; (b) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271–1287.
14. (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123–1178; (b) Kitamura,
T.; Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409–458.
15. (a) Wirth, T. Angew. Chem., Int. Ed. 2001, 40, 2812–2814; (b) Ladziata, U.;
Zhdankin, V. V. Arkivoc 2006, ix, 26–58.
16. (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41,
993–996; (b) Nicolaou, K. C.; Barn, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.;
Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233–2244.
17. (a) Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363–2389;
(b) Bao, W.; Wang, Z. Green Chem. 2006, 8, 1028–1033; (c) Zhao, D.; Wu, M.;
Kou, Y.; Min, E. Catal. Today 2002, 74, 157–189; (d) Dupont, J.; de Souza, R. F.;
Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667–3692; (e) Qiao, K.; Yakoyama, C.
Chem. Lett. 2004, 33, 472–473; (f) Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron
Lett. 2003, 44, 2409–2411; (g) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2005,
26. General procedure for the synthesis of b-cyano cinnamaldehydes 5: A mixture of
BH adduct 1 (1 mmol) and NaNO3 (1 mmol) was stirred in 1 mL of [Hmim]-
HSO4 at 80 °C for 1–2 h. After complete oxidation (monitored by TLC), the
reaction mixture was cooled to rt, TMSCN (1.5 mmol) was added and the
mixture was further stirred at rt for 2–3 h (Table 1). Then, water (10 mL) was
added and the product was extracted with ether (3 Â 10 mL). The combined
ether extracts were dried over MgSO4, filtered, concentrated under reduced
pressure and purified by silica gel column chromatography (hexane/ethyl
acetate 9.3:0.7) to afford the desired product 5. After isolation of the product,
the remaining aqueous layer containing the ionic liquid was washed with ether
(2 Â 10 mL) to remove any organic impurity, then H2SO4 (2.5 mmol) was
added, the mixture was stirred at 80 °C for 1 h, and cooled to about À5 °C in an
ice-salt bath. The precipitated solid was filtered off and the filtrate was dried
under vacuum to afford the IL [Hmim]HSO4 which was used in subsequent
runs. Physical data of representative compounds. Compound 5a: Yellowish
solid, yield 86%, mp 68–69 °C. IR (KBr) mmax 3028, 2856, 2241, 1748, 1720,
1605, 1577, 1455, 1284, 766, 712 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 3.72
.
(dd, 1H, J = 4.0, 2.2 Hz, 2-H), 3.86 (s, 3H, COOMe), 4.48 (d, 1H, J = 4.0 Hz, 3-H),
7.13–7.34 (m, 5Harom), 9.58 (s, 1H, J = 2.2 Hz, CHO). 13C NMR (100 MHz; CDCl3/
TMS): d 18.5, 49.9, 57.9, 116.9, 127.7, 127.9, 129.0, 130.5, 171.8, 198.6. EIMS
(m/z): 217 (M+). Anal. Calcd for C12H11NO3: C, 66.35; H, 5.10; N, 6.45. Found C,
66.63; H, 5.43; N, 6.13. Compound 5f: Yellowish solid, yield 85%, mp 104–
106 °C. IR (KBr) mmax 2998, 2851, 2240, 1730, 1607, 1579, 1386, 847 cmÀ1 1H
.
NMR (400 MHz; CDCl3/TMS): d 3.70 (dd, 1H, J = 4.0, 2.2 Hz, 2-H), 3.71 (s, 3H,
OMe), 4.45 (d, 1H, J = 4.0 Hz, 3-H), 6.89 (d, 2H, J = 7.8 Hz, Harom), 7.3 (d, 2H,
J = 7.8 Hz, Harom), 9.54 (d, 1H, J = 2.2 Hz, CHO). 13C NMR (100 MHz; CDCl3/TMS):
d 22.1, 42.8, 56.2, 112.6, 117.1, 118.1, 124.0, 131.1, 162.5, 198.7. EIMS (m/z):
214 (M+). Anal. Calcd for C12H10N2O2: C, 67.28; H, 4.71; N, 13.08. Found C,
66.98; H, 5.09; N, 12.74.
27. Masamune, S.; Ali, S. K. A.; Snitman, D. L.; Garvey, D. S. Angew. Chem., Int. Ed.
Engl. 1980, 19, 557–558.