Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
COMMUNICATION
Journal Name
Conclusions
In conclusion, utilization of an acDtiOvIa:t1e0d.103a9m/Cid6eOB0a2s52a6nA
electrophilic participant in a decarbonylative catalytic C-H
functionalization procedure has been reported. The variety of
functional groups tolerated using this approach demonstrated the
utilitarian nature of the methodology, allowing efficient access to
biaryl compounds. It also provides an alternative route in C–H
functionalization and a new activation model of C-N amide
bonds
Figure 2. Crystal structure of 1b.
Acknowledgements
The authors gratefully acknowledge the support of National
Natural Science Foundation of China (21272080).The Scientific
Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry
.
Notes and references
Several amides (1r, 1s, 1t) were employed in this catalysis
systems and a similar amide 1u were utilized to compare with N-
benzoyl saccharin under the same conditions. N-benzoyl
saccharin demonstrated higher reactivity than other amides
(Scheme 6).
1
(a) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007,
107, 174–238; (b) I. J. S. Fairlamb, Chem. Soc. Rev., 2007, 36
1036–1045; (c) S. I. Kozhushkov and L. Ackermann, Chem.
Sci., 2013, , 886–896; (d) K. Yuan, J.-F. Soulé and H. Doucet,
ACS Catal., 2015, , 978–991.
,
4
To further investigate the selective cleavage of N-acyl saccharins,
the X-ray structure of 1b (CCDC 1508194) was generated.
Compared with amide bond N1-C7 (O1) (τ = 5.8o, χN = 11.9o, χC =
2.0o), the X-ray structure indicates that amide bond N1-C8 (O2) is
highly distorted (τ = 21.8o, χN = 12.2o, χC = 1.8o). Twisted angle
(τ) of amide bond N1-C8 (O2) in N-acyl saccharins support
ground-state destabilization which could account for its high
reactivity and selectivity (Figure 2).10
5
2
(a) T. Newhouse and P. S. Baran, Angew. Chem. Int. Ed., 2011,
50, 3362–3374; (b) T. Brückl, R. D. Baxter, Y. Ishihara and P. S.
Baran, Acc. Chem. Res., 2012, 45, 788–802; (c) K. M. Engle,
T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45
,
826–839; (d) D. Leow, G. Li, T.-S. Mei and J.-Q. Yu, Nature,
2012, 486, 518–522; (e) K. M. Engle, T.-S. Mei, M. Wasa and
J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788–802; (f) G. Shan, X. L.
Yang, L. L. Ma and Y. Rao, Angew. Chem. Int. Ed., 2012, 51
,
On the basis of rhodium chemistry, a tentative mechanism of
the catalytic cycle is proposed (Scheme 7). Oxidative addition of
N-acylsaccharins to generate an acylrhodium complex, then
undergoing extrusion of one molecule of carbon monoxide,
generating the complex II; then, C–H activation via ortho-
chelating assistance in the presence of K3PO4, which provides the
13070–13074; (g) K. Shin, H. Kim and S. Chang, Acc. Chem.
Res., 2015, 48, 1040–1052; (h) H. Wang, M. Moselage, M. J.
Gonzalez and L. Ackermann, ACS Catal., 2016, 6, 2705–2709;
(i) J.-T. Yu and C.-D. Pan, Chem. Commun., 2016, 52, 2220–
2236; (j) J. Liu, G. Chen and Z. Tan, Adv. Synth. Catal., 2016,
358, 1174–1194; (k) H. M. L. Davies and D. Morton, J. Org.
Chem., 2016, 81, 343–350.
complex III. Finally, reductive elimination to form the new C-C
bond and regenerate the Rh(I)-species.
3
(a) L. G. Mercier and M. Leclerc, Acc. Chem. Res., 2013, 46
1597–1605; (b) J. Wencel-Delord and F. Glorius, Nat. Chem.,
2013, , 369–375; (c) R. Vanjari and K. N. Singh, Chem. Soc.
,
5
Rev., 2015, 44, 8062–8096; (d) T. Cernak, K. D. Dykstra, S.
Tyagarajan, P. Vachal and S. W. Krska, Chem. Soc. Rev., 2016,
45, 546–676; (e) P. Subramanian, G. C. Rudolf and K. P.
Kaliappan, Chem. Asia. J., 2016, 11, 168–192; (f) L. J. Durak, J.
Scheme 7. Proposed Mechanism for rhodium-catalyzed C–H
Functionalization.
T. Payne and J. C. Lewis, ACS Catal., 2016, 6, 1451–1454.
O
O
4
5
(a) M. Kim, J. Kwak and S. Chang, Angew. Chem. Int. Ed.,
2009, 48, 8935–8939; (b) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem.
Commun., 2010, 46, 677–685; (c) D. A. Colby, A. S. Tsai, R. G.
Bergman and J. A. Ellman, Acc. Chem. Res., 2012, 45, 814–
825.
R
N
S
[Rh (COD)Cl]2 (I)
N
O
O
I
R
O
-CO
(a) P. B. Arockiam, C. Fischmeister, C. Bruneau and P. H.
Dixneuf, Angew. Chem. Int. Ed., 2010, 49, 6629–6632; (b) L.
Ackermann and A. V. Lygin, Org. Lett., 2011, 13, 3332–3335;
(c) L. Llies, M. Kobayashi, A. Matsumoto, N. Yoshikai and E.
Nakamura, Adv. Synth. Catal., 2012, 354, 593–596; (d) S.
X = Cl or
R
N
S
O
Rh (III)
X
O
II
N
H
N
Gonell and E Peris, ACS Catal., 2014, 4, 2811–2817; (e) R.
K3PO4
R
Rh
Haridharan, K. Muralirajan and C.-H. Cheng, Adv. Synth.
Catal., 2015, 357, 366–370; (f) L. Ackermann, A. Althammer
and R. Born, Angew. Chem. Int. Ed., 2006, 45, 2619–2622; (g)
W. F. Song and L. Ackermann, Angew. Chem. Int. Ed., 2012,
X
(III)
K2HPO4
III
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins