4778 Organometallics 2010, 29, 4778–4780
DOI: 10.1021/om100335j
Carbene-Stabilized Parent Phosphinidene†
Yuzhong Wang, Yaoming Xie, Mariham Y. Abraham, Robert J. Gilliard, Jr.,
Pingrong Wei, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson*
Department of Chemistry and the Center for Computational Chemistry,
The University of Georgia, Athens, Georgia 30602-2556
Received April 22, 2010
16
˚
Summary: The lithiated N-heterocyclic carbene-phosphini-
dene adduct L0:P-H (3; L0:=:C{[N(2,6-Pri2C6H3)]2CHCLi-
(THF)3}) unexpectedly resulted from the reaction of lithium
metal with the carbene-stabilized diphosphorus species L:P-P:L
(2; L:=:C{N(2,6-Pri2C6H3)CH}2). Compound 2 was previously
prepared by the potassium graphite reduction of L:PCl3 (1).
elongated carbon-phosphorus double bond (1.740(1) A),
[(CH3)2N]2CdP-H may be regarded formally as an acyclic
diaminocarbene (I)-parent phosphinidene adduct.17 While
such N-heterocyclic carbene (II)-PH complexes have been
investigated theoretically,11,12 experimental data have yet to be
reported. We recently utilized N-heterocyclic carbenes18-21 to
stabilize a series of highly reactive low-oxidation-state main-
group molecules, including the parent diborene(2) (H-Bd
B-H),22,23 disilicon (Si2),24 diphosphorus (P2),25 diarsenic
(As2),26 and a neutral Ga6 octahedron.27 We now report
the syntheses,28 structures,28 and computations29 of carbene-
stabilized phosphorus trichloride, L:PCl3 (1; L: = :C{N(2,6-
Pri2C6H3)CH}2) and the first lithiated NHC (III) parent phos-
phinidene adduct, L0:P-H (3; L0:=:C{[N(2,6-Pri2C6H3)]2CH-
CLi(THF)3}). While both I and II are well-known and exten-
sively investigated carbene ligands, III, in contrast, may be
regarded as a new anionic N-heterocyclic dicarbene, an anionic
C3N2 ring with two carbene centers: one is an anionic version of
an “abnormal” carbene (aNHC) center,30 while the other is a
neutral carbene center.
Free phosphinidenes (R-P), highly reactive group 15 ana-
logues of carbenes,1-5 typically have triplet ground states and
are studied at low temperature.6 Transition-metal complexation
is an effective means to stabilize these short-lived species. The
transition-metal complexes of phosphinidenes prefer singlet
ground states,7 where phosphinidenes may act as two- or four-
electron donors.1 However, the phosphorus valence shell in free
phosphinidenes is unsaturated. This enables adduct formation
with electron pair donors, in particular Lewis base ligands2 such
as phosphines8 and N-heterocyclic carbenes (NHCs).9,10
In contrast to the diverse chemistry of substituted phosphini-
denes,2,3,5 studies of the parent H-P molecule have largely
been computational.7,11,12 With a triplet ground state and a 22
kcal/mol triplet-singlet energy gap, diatomic H-P is a highly
reactive molecule.13 The synthesis and characterization of
its carbene complex [(CH3)2N]2CdP-H (I; Figure 1) were
achieved more than two decades ago.14-16 Consistent with an
The reaction of the carbene ligand (L:) with PCl3 in hexane
affords the hypervalent L:PCl3 complex 1 in almost quanti-
tative yield. Potassium graphite reduction of 1 gave the
diphosphorus carbene complex L:P-P:L (2).25 Phosphini-
dene 3 was isolated as yellow crystals from the reaction of 2
with lithium metal (Scheme 1). Although the mechanism is
† Part of the Dietmar Seyferth Festschrift. This paper is dedicated to
Professor Dietmar Seyferth for his dedicated service to Organometallics
and to the field of organometallic chemistry.
*To whom correspondence should be addressed. Tel.: 706-542-1853.
Fax: (þ1) 706-542-9454. E-mail: robinson@chem.uga.edu.
(1) Mathey, F. Angew. Chem., Int. Ed. 1987, 26, 275–286.
(2) Cowley, A. H. Acc. Chem. Res. 1997, 30, 445–451.
(3) Lammertsma, K.; Vlaar, M. J. M. Eur. J. Org. Chem. 2002, 1127–1138.
(4) Mathey, F. Dalton Trans. 2007, 1861–1868.
(5) Weber, L. Eur. J. Inorg. Chem. 2007, 4095–4117.
(6) Li, X.; Weissman, S. I.; Lin, T.-S.; Gaspar, P. P.; Cowley, A. H.;
Smirnov, A. I. J. Am. Chem. Soc. 1994, 116, 7899–7900.
(7) Ehlers, A. W.; Lammertsma, K.; Baerends, E. J. Organometallics
1998, 17, 2738–2742.
(17) Le Floch, P. Coord. Chem. Rev. 2006, 250, 627–681.
(18) Wang, Y.; Robinson, G. H. Chem. Commun. 2009, 5201–5213.
(19) Wolf, R.; Uhl, W. Angew. Chem., Int. Ed. 2009, 48, 6774–6776.
(20) Scheschkewitz, D. Angew. Chem., Int. Ed. 2008, 47, 1995–1997.
(21) Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050–1051.
(22) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King,
R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am.
Chem. Soc. 2007, 129, 12412–12413.
(23) Wang, Y.; Quillian, B.; Wei, P.; Xie, Y.; Wannere, C. S.; King,
R. B.; Schaefer, H. F., III; Schleyer, P. v. R.; Robinson, G. H. J. Am.
Chem. Soc. 2008, 130, 3298–3299.
(8) Burg, A. B.; Mahler, W. J. Am. Chem. Soc. 1961, 83, 2388–2389.
(9) Arduengo, A. J., III; Calabrese, J. C.; Cowley, A. H.; Dias,
H. V. R.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. Inorg. Chem.
1997, 36, 2151–2158.
(24) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III;
Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069–1071.
(25) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III;
Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 14970–
14971.
(10) Arduengo, A. J., III; Carmalt, C. J.; Clyburne, J. A. C.; Cowley,
A. H.; Pyati, R. Chem. Commun. 1997, 981–982.
(26) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F., III;
Schleyer, P. v. R.; Robinson, G. H. Chem. Eur. J. 2010, 16, 432–435.
(27) Quillian, B.; Wei, P.; Wannere, C. S.; Schleyer, P. v. R.; Robinson,
G. H. J. Am. Chem. Soc. 2009, 131, 3168–3169.
(11) Frison, G.; Sevin, A. J. Phys. Chem. A 1999, 103, 10998–11003.
(12) Frison, G.; Sevin, A. J. Organomet. Chem. 2002, 643-644, 105–
111.
(13) Zittel, P. F.; Lineberger, W. C. J. Chem. Phys. 1976, 65, 1236–
1243.
(14) Issleib, K.; Leissring, E.; Riemer, M.; Oehme, H. Z. Chem. 1983,
23, 99–100.
(15) Chernega, A. N.; Antipin, M. Y.; Struchkov, Y. T.; Sarina, T. V.;
Romanenko, V. D. Zh. Strukt. Khim. 1986, 27, 78–82.
(16) Chernega, A. N.; Ruban, A. V.; Romanenko, V. D.; Markovskii,
L. N.; Korkin, A. A.; Antipin, M. Y.; Struchkov, Y. T. Heteroat. Chem.
1991, 2, 229–241.
(28) See the Supporting Information for synthetic and crystallo-
graphic details.
(29) In DFT computations the 3-H model was optimized at the
B3LYP/DZP level with the Gaussian 94 and Gaussian 03 programs:
Frisch, M. J.; et al. Gaussian 94, Revision B.3; Gaussian Inc., Pittsburgh,
PA, 1995; Gaussian 03, revision C.02; Gaussian, Inc., Wallingford, CT, 2004
(see the Supporting Information for details).
(30) Giziroglu, E.; Donnadieu, B.; Bertrand, G. Inorg. Chem. 2008,
47, 9751–9753.
r
pubs.acs.org/Organometallics
Published on Web 05/28/2010
2010 American Chemical Society