Journal of the American Chemical Society
Communication
(3) Dietrichbuchecker, C. O.; Sauvage, J. P. Chem. Rev. 1987, 87,
795−810.
(4) Breault, G. A.; Hunter, C. A.; Mayers, P. C. Tetrahedron 1999, 55,
5265−5293.
(30) The stability constants values of the complexes involving ion-
pair 4a should be considered as apparent because ion-pair dissociation
and ion-paired complex formation equilibria are not taken into
consideration in the mathematical analysis of the titration data.
(5) Gavina, P.; Tatay, S. Curr. Org. Synth. 2010, 7, 24−43.
(6) Qu, D. H.; Tian, H. Chem. Sci. 2011, 2, 1011−1015.
(7) Fuller, A. M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons,
S.; Walker, D. B. Angew. Chem., Int. Ed. 2004, 43, 3914−3918.
(8) Hancock, L. M.; Beer, P. D. Chem. Commun. 2011, 47, 6012−
6014.
(9) Cheng, H. M.; Leigh, D. A.; Maffei, F.; McGonigal, P. R.; Slawin,
A. M. Z.; Wu, J. J. Am. Chem. Soc. 2011, 133, 12298−12303.
(10) Voignier, J.; Frey, J.; Kraus, T.; Budesinsky, M.; Cvacka, J.;
Heitz, V.; Sauvage, J. P. Chem.Eur. J. 2011, 17, 5404−5414.
(11) Vickers, M. S.; Beer, P. D. Chem. Soc. Rev. 2007, 36, 211−225.
(12) Lankshear, M. D.; Beer, P. D. Acc. Chem. Res. 2007, 40, 657−
668.
(13) Gong, H. Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Keller, K.
M.; Sessler, J. L. J. Am. Chem. Soc. 2011, 133, 1526−1533.
(14) Hunter, C. A. J. Am. Chem. Soc. 1992, 114, 5303−5311.
(15) Altieri, A.; Aucagne, V.; Carrillo, R.; Clarkson, G. J.; D’Souza, D.
M.; Dunnett, J. A.; Leigh, D. A.; Mullen, K. M. Chem. Sci. 2011, 2,
1922−1928.
(16) Schalley, C. A.; Reckien, W.; Peyerimhoff, S.; Baytekin, B.;
Vogtle, F. Chem.Eur. J. 2004, 10, 4777−4789.
(17) Wyman, I. W.; Macartney, D. H. J. Org. Chem. 2009, 74, 8031−
8038.
(18) Wenz, G.; Han, B. H.; Muller, A. Chem. Rev. 2006, 106, 782−
817.
(19) Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725−
2828.
(20) Brown, A.; Beer, P. D. Dalton Trans. 2012, 41, 118−129 and
references cited therein.
(21) Kim, S. K.; Sessler, J. L. Chem. Soc. Rev. 2010, 39, 3784−3809.
(22) Verdejo, B.; Gil-Ramirez, G.; Ballester, P. J. Am. Chem. Soc.
2009, 131, 3178−3179.
(23) For other examples of N-oxides used as linear components in
the assembly of [2]pseudorotaxane see ref 8 and Chen, M. J.; Han, S.
J.; Jiang, L. S.; Zhou, S. G.; Jiang, F.; Xu, Z. K.; Liang, J. D.; Zhang, S.
H. Chem. Commun. 2010, 46, 3932−3934.
(24) Ballester, P.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila, R. M.;
Oliva, A. I.; Sanders, J. K. M.; Hunter, C. A. J. Org. Chem. 2005, 70,
6616−6622.
(25) An interwoven structure for the 1·2a complex was also observed
in the solid-state. 2a is threaded through 1, showing disorder between
two equivalent positions.
1
(26) Using H NMR titrations we determined at 298 K the stability
constant values for K1·2a = 800 M−1, K2a·4 = 3 × 103 M−1, and a
dimerization constant value Kd = 100 M−1 for 2a.
(27) The cyanate and thiocyanate anions are ambidentate. Probably
in solution, the sandwiched anion rotates freely within the complex.
(28) We attempted the characterization of the pseudorotaxane-like
complex 4a⊃1·2a in the gas phase using ESI-TOF-MS with negative
mode detection. We could not detect the ion peak corresponding to
[NCO⊃1·2a]− (1476.7 m/z). Instead, we observed a cluster of
monocharged negative ions at 1479.7, 1496.7, 1529.9, 1546.9, and
1563.9 m/z (Figure S18 [SI]). These molecular masses and their
corresponding isotopic distribution patterns coincide with those
calculated for molecular formulas [NCO⊃1·2a + H2 + H]−•
,
[NCO⊃1·2a + H2 + H2O]−, [NCO⊃1·2a + 2H2 + H2O
+CH3O]−•, [NCO⊃1·2a + 2H2 + H2O +CH3OH + HO]− and
[NCO⊃1·2a + 2H2 + H2O +CH3OH + 2HO]−•, respectively. Most
likely, the anionic or anion−radical complex NCO⊃1·2a reacted with
solvent molecules or ions/radicals derived from them in the ionization
process.
(29) The values of the stability constants and enthalpies for
formation for 1·4a and 1·(4a)2 were fixed during the mathematical
analysis of the titration data. K1·4a = 1 × 10−5 M−1, ΔH1·4a = −5 kcal/
mol; K1·4a↔1·(4a) = 1 × 10−6 M−1, ΔH1·4a↔1·(4a) = −8 kcal/mol.
2
2
10736
dx.doi.org/10.1021/ja301900s | J. Am. Chem. Soc. 2012, 134, 10733−10736